
### MARSHALL ISLANDS FILE TRACKING DOCUMENT

Record Number: 290 File Name (TITLE): <u>Presedual Contamination</u> <u>A Marts, Animals, Soil, and water</u> Document Number (ID): <u>USNR01-455</u> DATE: \_\_\_\_\_\_\_ Previous Location (FROM): \_\_\_\_\_\_ AUTHOR: H-U- Weiss stal Addditional Information:

OrMIbox: CyMIbox: \_//

r



#### RESIDUAL CONTAMINATION OF PLANTS, ANIMALS, SOIL, AND WATER OF THE MARSHALL ISLANDS TWO YEARS FOLLOWING OPERATION CASTLE FALLOUT

#### Research and Development Report USNRDL-455 NS 081-001

#### 15 August 1956

by

H.V. Weiss S.H. Cohn W.H. Shipman J.K. Gong

#### Special Distribution

<u>.</u>

#### Technical Objective AW-7

مى بىلى بىلى ئېڭى ئېڭى ئېڭى ئېڭى ئېڭى ئې 1944 - بېلى ئېڭى ئېڭى ئېڭى ئېڭى ئېچى ئېچىكى

#### Chemical Technology Division E.R. Tompkins, Head

Biological and Medical Sciences Division Captain A. R. Behnke, (MC) USN, Acting Head

U. S. NAVAL RADIOLOGICAL DEFENSE LABORATORY San Francisco 24, California

(a) A set of the se

E

NA THE REAL POINT OF THE POINT

山大大、【ASA】(1995年),1995年),1995年),1995年),1995年),1995年(1995年),1995年),1995年),1995年(1995年),1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),1995年(1995年),199

Scientific Director P.C. Tompkins

Commanding Officer and Director Captain Richard S. Mandelkorn, USN

### ABSTRACT

A State of the second second second second

L

CRACKER LIND F. N

W AND REAL PROPERTY AND IN THE PARTY OF ALL AND

and the house of the spectrum of the grad

and prove the second second second second second second second second

IN COLOR OF THE REAL PROPERTY OF THE

7

E

ŀ

The amount and distribution of radioactive material remaining on several atolls and incorporated into plants and animals of the Marshall Islands was determined two years after their contamination by fallout from the March 1, 1954 nuclear detonation of Operation CASTLE.

Readily detectable amounts of radioactive contamination were found in animals, plants and soil. Most of the activity in the edible portion of plant specimens was contributed by cesium-137

The major radionuclides found in the tissues of fish was zinc-65, and that in clams, cobalt-60.

Ħ

3.415

UNGLASSF

1 5 4 9.0-01

and the contract of the costs.

i en

A : 19

÷.

1. Ca 1. A

5 44 4

and a second

 $2r_{ij}(j)$ 

Residual soil contamination remained confined to the surface.

#### SUMMARY

#### The Problem

To determine the amount and distribution of radioactive material remaining on several atolls and incorporated into plants and animals two years after their contamination by fallout from the 1 March 1954 nuclear detonation of Operation CASTLE.

#### Findings

1.

小型性容的最近的 网络小型网络小型角点小型

Readily detectable amounts of radioactive contamination were found in Marshall Island animals, plants, water and soil samples.

An increase was observed in the activity of coconuts, compared with the results of a survey made one year ago (about one year post-detonation).

Some samples of portulaca, coconut husks, pandanus keys, pandanus air roots, a clam, and certain potable water contained levels of strontium-90 which exceeded the maximum permissible concentration.

The gamma radiations over the atolls decreased by 80 per cent over the past year. This loss of activity was attributed to radioactive decay rather than the migration of nuclides to deeper layers or their erosion into the surrounding water.

The activity in fish was almost 25 per cent of that determined at the one-year post-detonation survey.

100.000

1.1.1.1.1.1.1.1.1

#### ADMINISTRATIVE INFORMATION

This is the second report of the atoll Resurvey Project. The resurvey was made under the joint sponsorship of the Bureau of Ships and the Atomic Energy Commission, Bureau of Ships Project Number NS 081-001, Technical Objective AW-7, as described in U.S. Naval Radiological Defense Laboratory Annual Progress Report to the Bureau of Ships, DD form 613, of 6 October 1955.

The work was done jointly by the Chemical Technology Division and the Eiological and Medical Sciences Division of this laboratory.

#### Acknowledgments

Appreciation is expressed to the following for assistance in the analytical work described in this report: M. Brau, HN, P. Simone, HM3, J.A. Seiler, M. Honma.

Special thanks are extended to E. C. Evans, III, who directed the collection of samples and to W.L. Milne, who assisted in the collection. Special thanks for their assistance in the collection of samples also are accorded to LT P.L. Schlegel, USNR, of Underwater Demolition Team 11, and Q.D. Dennison, QM1, of Underwater Demolition Team 12, both of U.S. Naval Amphibian Base, Coronado, California.

The authors also wish to gratefully acknowledge the gamma dose-rate measurements secured by Dr. E.R. Tompkins and Capt. W. T. Pflueger, USA.

Mr. Jarvis Todd assisted in the preparation of this report.

iv

A. 4 1. 4

11日の意味は しんしょう かううう

lan Antonia (1997) (1) Ather Marine Bara Bara and Asia (1998) and a

### CHAPTER 1

### INTRODUCTION

The object of this study was to determine the persistence and fate of radioactive material in the biological systems and in the physical environment of those Margaall Islands contaminated by fallout from the 1 March 1954 nuclear detonation. For this purpose a resurvey of the islands was conducted in February 1956 by a group of scientists from the U.S. Naval Radiological Defense Laboratory. Specimens of animals (land and marine) and bards, and samples of plants, soil and water were collected for analysis. Radio assays for gross beta and gamma activity were conducted and in addition radiochemical determination of individual fission products and induced activities were made.

A few weeks after the 1954 incident a survey was made of the contaminated atolls,<sup>1</sup> and soil, water, and biological specimens were collected from Rongelap and Utirik. These samples were analyzed and the results were given in the Operation CASTLE, Project 4.1 report.<sup>2</sup> Soil and water samples contained microcurie amounts of activity; barely detectable quantities were found in plants. Approximately one year following the nuclear letonation, a survey of the islands indicated that the activity was present in metabolic systems and was still in the environment at lower but significant levels.<sup>3</sup> The present study, conducted two years post-detonation, provides further data on the persistence and distribution of the fallout activity. From these data an evaluation can be made of the potential hazard from the ingestion of contaminated materials.

-1-

and and here the second for the second s All second sec

. . 2 

# (This page is blank)

. . .

Station 15.02 Fatt 1.2.

الماركة والهروشرة فيراب موافر الرديان المراجع

.....

#### CHAPTER 2

the first state of the second states of the second states and the second states are set of the second states and the second states are set of the second states are second states are set of the second states are set of t

#### GROSS ACTIVITY IN PLANTS, WATER AND SOIL

#### PROCEDURES

THE LOSS BEAUTY THE IS

Plant specimens were packaged and shipped in individual plastic bags, soils in stainless steel core tubes, and water samples in 1-liter polyethylene bottles.

With the exception of water samples, the samples were prepared for analysis by the procedures described in the previous report<sup>3</sup> which consisted of ashing biological samples and counting soil samples as received. Water specimens were reduced to the smallest possible volume consistent with maintaining the salts in solution. An aliquot of the concentrate was placed on a planchet and heated to dryness under an infrared lamp prior to counting.

After the mounting, the samples were beta-counted in a gas flow proportional counter at 10.3 per cent geometry as determined with a  $Sr^{90}-Y^{90}$ standard mounted on dominum. Gross gamma measurements were made in a well scintillation counter with a counting efficiency of 43 per cent for a  $Co^{50}$  standard.

Gamma dose rates of the islands at 3 ft above ground were determined with AN/PDR 27C survey meter between February 7 and 14, 1956.

#### **RESULTS AND DISCUSSION**

#### Plants

182 8

Web contraction by

and the second second

o, Hayaraa

and the second

The gross beta activity of the plant specimens analyzed is recorded in Table 2.1 according to the island from which the sample was recovered. The data were corrected for the counting efficiency of Sr<sup>90</sup> and presented

-3-

parter to 27 5 1

a which and a start of the start of the

in the second second second

1 1 1 4 A.

State of the state



### TABLE 2.1

|                   |                                                       | Gejen                          | Eniwetak                     | Enlactok                     | Rongelap                     | Sifo                         | Utirik                       | Likier                   |
|-------------------|-------------------------------------------------------|--------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------------------|
| Plant             | Part                                                  | <u>PL</u>                      | ANTS(b)                      | (c/m/kg x                    | 10-5)                        |                              |                              |                          |
| Portulaca         | Whole Plant                                           | 87.4                           | 19.2                         | 3.05                         | 1.26                         | -                            | 1.71                         | 1.3                      |
| Arrowroot         | Stems, Leaves<br>Tubers                               | 11.0<br>2.32                   | 4.5<br>0.57                  | 0.32<br>0.69                 | 0.25<br>0.55                 | 0.21<br>0.08                 | 0.14                         | 0.0                      |
| Pandanus          | Air Root<br>Leaves<br>Green Keys<br>Ripe Keys         | 2.87<br>2.64<br>1.27           | 0.17<br>1.02<br>0.37         | 1.05<br>5.28<br>0.70<br>0.53 | 0.32<br>0.38<br>0.22<br>0.17 | 0.98<br>0.15<br>0.10         | 0.08<br>0.21<br>0.09<br>0.07 | 0.0<br>0.0<br>0.0        |
| Papaya            | Ripe<br>Green<br>Leaves, Trunk                        | :                              | •                            | •                            | 0.12<br>0.25<br>0.09         | -                            | 0.11<br>0.09<br>0.16         | 0.0                      |
| Ripe Coconut      | Milk<br>Mcat<br>Shell<br>Husk                         | / 2.87<br>1.90<br>4.98<br>1.83 | 0.36<br>0.38<br>0.65         | 1.97<br>0.72<br>1.57         | 0.54<br>0.24<br>0.44<br>1,31 | 0.63<br>0.17<br>0.28<br>0.77 | 0.12<br>0.08<br>0.06<br>0.21 | 0.5<br>0.0<br>0.0<br>0.0 |
| Green Coconut     | Whole<br>Milk<br>Meat<br>Shell<br>Husk<br>Shell, Husk | 3.1                            | 0.29<br>0.33<br>0.11         | 0.11<br>0.25<br>0.80<br>0.48 | 0.05                         | 0.13<br>0.08<br>0.37<br>0.11 | 0.07<br>0.08<br>0.11         |                          |
| Sprouting Coconut | Milk<br>Meat<br>Shell<br>Husk                         | :                              | 1.61<br>0.38<br>0.29<br>0.73 | 0.76<br>0.40<br>0.41<br>1.57 | 0.79<br>0.12<br>0.35<br>0.88 | 0.71<br>0.30<br>0.18<br>0.68 | 0.11<br>0.07<br>0.04<br>0.26 | 0.0                      |
| Coconut           | Leaves<br>Frond<br>Leaves, Frond                      | 1,48                           | 15.4<br>0,94                 | 0.88                         | -                            | 0.84<br>0.23                 | 4.7                          | 1.6                      |
| Banana            | Fruit<br>Bark<br>Leaves                               | :                              | :                            |                              | -                            | -                            | :                            | 0.0<br>0.0<br>0.1        |
| Taro              | Leaves, Stalks<br>Tuber, Roats<br>with Soil           | •                              | -                            | -                            | -                            | •                            | -                            | 0.0<br>0.1               |

### Cross Zata Activity in the standard and Soil Samples".

(a) All counts were corrected for the counting efficiency of  $\mathrm{Sr}^{90}\text{-}\gamma^{90}$  .

and the second secon

and the second second and the second second

古海豚榆椰叶煤 AR(19-2015-1-14),山北山、水和山、田川市和村村山、田村村 人名法勒利 化浓度 人名法格利尔 人名法法德尔 人名

· 1.1

stager, sing ,

• :

(b) Gross beta activity of plant ramples was determined in April 1956 and that of soil and water in May 1956.

-4-

an Arger

and the second sec

en 12

المار وفيتهم فالأشر بالماري والروا ومترجلا الله الم

The second state the second state is a second

Same rates.

• • •

Ocean

.

NDA

0.09

0.09

0.08

.

. :

. . 1

**新生产的**是一种的新生产的

Frank Million and Aller

and the states of the second

CLANKER SHOP TO LET TO

an and store and

80.0

NDA

1.15 8.1

#### 

. **: :** , : :

المراجع والمراجع

· • • \*•

1

-

1

1

1

1777 A

í

## TABLE 2.1 (continued)

Gross Beta Activity in Plant, Water and Soil Samples(a)

| · . | e <b>te</b> l <b>3*</b> 40 | ' Gejen    | Eniwetak | Eniaetok  | Rougelap                | Sifo | Utirik       | Liklep |
|-----|----------------------------|------------|----------|-----------|-------------------------|------|--------------|--------|
|     | Source                     |            | WATER(b) | (c/m/lite | er x 10 <sup>-5</sup> ) |      |              |        |
| •   | Cistern                    | , <b>•</b> | -        | -         | 0.008                   | -    | NDA (9       | -      |
|     | Well                       | •          | •        | NDA       | •                       | •    | 0.1,         | NDA    |
| •   | <i>.</i>                   | ·          |          |           |                         |      | 0,03,<br>NDA |        |

Lagoon NDA NDA NDA NDA

NDA

Depth (in.) SOIL(b) (c/m/kg x 10-5)

NDA

| Barran Barran Barran |      |      |      |      | ••   |      |     |
|----------------------|------|------|------|------|------|------|-----|
| 0-1                  | 3470 | 34.8 | 6,43 | 7.00 | 4.97 | 4.43 | NDA |
| 12                   | -    | •    | •    | 0.70 | -    | • '  | -   |
| 18                   | 0.80 | -    | ND A | -    | -    | -    | NDA |
| 24                   | -    | NDA  | -    | •    | 0.04 | 0.51 | •   |
| 33                   | 1,33 | •    | -    | NDA  | -    | •    | -   |
| 36                   | •    | •    | -    | •    | -    | -    | NDA |
| 44-45                | •    | -    | 0.07 | •    | -    | -    | -   |
| 48                   | -    | NDA  | -    | -    | NDA  | -    | -   |
| 55-56                | -    | -    | -    | -    | . 🛥  | 0.70 | -   |
|                      |      |      |      |      |      |      |     |

80.0

0.06

(a) All counts were corrected for the counting efficiency of  $Sr^{90}-Y^{90}$ .

1.04.

(b) Gross beta activity of plant samples was determined in April 1956 and that of soil and water in May 1958.

(c) NDA indicates no detectable activity.

. •

. . . .

ೆ ಕಾರ್ಯಕ್ರಿ ಕೇಂದ್ರ ಗೋರ್ ಕ್ಷಾರ್ ನಿ**ಚಾನ್ಯ ಕ್ರಾ**ರ್ಥ ಕ್ರೈ ಬಿ ಸ್ಪತ್ರಿ ಪ್ರಮುಖ ಸಂಖ್ಯಾಗ ಗೋರ್ ಕ್ರಿಯೆಗೆ ಸಂಬಂಧ ಸಂಖ್ಯಾಗಿ ಸೇರೆಗೆ ಸ್ಪಟ್ಟಿಗೆ ಸ್ಪಟ್ಟಿಗೆ ಸಂಸ್ಥೆ ಸಂಖ್ಯೆ ಸಿಕ್ಕಿಗೆ ಸ ಕ್ರಾ. ಕ್ರೀತ್ರಿ ಕ್ರಾಂಗ್ ಕ್ರಾಂಗ್ ಕ್ರಾಂಗ್ ಕ್ರಾಂಗ್ ಸ್ಟ್ರೀ ಕ್ರಾಗ್ ಸ್ಟ್ರೀ ಕ್ರಿಯೆಗೆ ಸ್ಪಟ್ಟಿಗೆ ಸ್ಪಟ್ಟಿಗೆ ಸ್ಪಟ್ಟಿಗೆ ಸ್ಟ್

and the second second

-5-

as corrected counts par minute par bilogram of wet complet. Franizical corrections for saif-constantion were one available barries for activity of most samples was so low as to prevent such evaluation with expediency. Furthermore since the nuclide composition varied among plants and even within different sections of the same plant, a blanket correction was impossible.

1 13 3

The gross gamma activity of these samples is shown in Table A.1. Appendix. The activities corrected for the counting efficiency of  $Co^{60}$ , are essentially the same as those calculated for the beta activity. The exceptions are portulaca, the leaves of arrowroot, and the coconut palm where the beta activity will consistently slightly greater than the gamma activity. Data presented in Chapter 3 show these exceptions are expressions of the nuclide composition.

Portulaca was many times more active than other plant specimens recovered from the same island. Leaves of plants were generally more active than their fruit counterpart. The fact that surfaces of leaves were not decontaminated prior to analysis may account at least in part for this difference.

Three stages of coconuts - green, ripe, and sprouting nut - were analyzed. Both green and ripe pandanus keys were examined. No distinct differences between the stage of growth and activity were discernible.

Where possible the meat, milk, shell, and husk of coconuts were analyzed separately. Within the limits of the analysis, the activity appears equally distributed among these fractions.

The order of plant activities relative to the island from which they were recovered was: Gejen > Eniwetak . Eniaetok > Rongelap > Sifo, Utirik > Likiep. These results agree well with the activities of the respective soils as shown in Table 2.1.

An accurate comparison of the gross beta activity of samples analyzed in the current survey with the data secured one year ago was not possible since self-absorption corrections were applied in the previous survey. It was, however, interesting to note that, although such corrections were not made, coconuts exhibited greater beta activity in the present study. This finding, as will be discussed later, suggests that coconuts possess an unusual capacity to concentrate a component of the residual activity.

#### Water

 $W \geq W_{\rm eff} > 0$ 

3 S. Barthe batter of the Bar under the

Burke B

Sale and

đ

The gross beta activity of well, cistern, ocean, and lagoon water is shown in Table 2.1. Gamma measurements of these samples are recorded

A Date

and the prover the development of the development of the second states of the second states and the

and the system

a water appearing a star of the de-

Contraction and the second second

A Providence

and the second second

ELECTRON PROPERTY BALLYND

Sec.

یونه در این ورا مایو دیوانه در این ایک ایک سو مواده در ایک ایک سو مواد

the second s te transfer de la secola 

an an an an an antaiseachtan a sa an an theory and and and an an the state and participation of the state of the

en e e e e e e e e e e e a la cara de la composición de la compo a ann a chuir a' gu an 1979. Anns an 1989 anns an 1989 anns an 1989. • • • 24

and the second in the second set of the and of the maximum (1) Construction of the construction of the second s Second se TABLE 2,2 the state of the s 

| Island   | 11 Months<br>(mr/hr) | 23 Months<br>(mr/hr) |          | ining Activity<br>ber cent) |
|----------|----------------------|----------------------|----------|-----------------------------|
| Likiep   | 0.04                 | <0.05                |          | •                           |
| Utirik   | 0.14                 | 0.05                 |          | 35                          |
| Eniwetak | 0.7                  | 0.16                 | • • •    | 23                          |
| Rongelap | 0.7                  | 0.09                 |          | 13                          |
| Eniaetok | 2.4                  | 0.28                 |          | 12                          |
| Kabelle  | 4.2                  | 0.96                 |          | 23                          |
| Gejen    | 5.4                  | 1.5                  |          | 28                          |
|          |                      |                      | Average: | 26                          |

Average Gamma Dose Rates from Previous and Current Surveys

1.02

1

de stander og som er som e

naga tang berteken di kanang segai di kanang s Kanang segai di kanang segai di

.

n and the state of the presence of the state of

a na an athacha dhaaran a cana ana i bha cana an

String in La

in Table A.I. Appendix. The activities were either imperceptible or of a low order of mognitude.

Soil

To describe the downward movement of the activity, profile soil samples were obtained in increments to a depth of 56 in. As shown in Table 2.1, the greater part of the beta activity appeared fixed to the upper surface of the soil; the remaining part diminished sharply and progressively at deeper levels. The bulk of the activity appeared to be firmly absorbed to the soil since it resisted the downward migration of the heavy rains to which these islands are subject.

Table 2.2 lists the gamma dose rates found on the island survey; levels observed 1 year before are included. The gamma activity was reduced over the 12-month period by  $74 \pm 8$  per cent. Calculations based on the Hunter-Ballou curves for beta decay of mixed fission products<sup>4</sup> predict that 80 per cent of the gamma activity is lost by radioactive decay over this interval. This decay was obviously the significant factor in reduction of the gamma field rather than the leaching of nuclides to deeper layers and their eroding into the adjacent waters.

-8-

APPER AND A STREET AND A

lan girt materie Ar Sarah

TO TRADE STREET, STREET 

19. 14. 44. 1987

ى بى ئىلىغان بىيەلىلىغان بىر بىلىغان بىيە <del>قىيۇسى</del>چە بىلەت كەركەت بىلەر بىيەلىلىغان بىلىغان بىلىغ

#### CHAPTER 3

#### NUCLIDE COMPOSITION IN PLANTS, WATER AND SOIL

20.0

The long-lived isotopes of mixed fission products, which present the greatest internal radiation hazard to human inhabitants of a contaminated area, were analyzed in plant, soil and water samples. These isotopes were the total rare earths,  $Sr^{99}$ ,  $Cs^{137}$ , and  $Ru^{106}$  and comprised the total detectable fission product activity remaining 2 years after the nuclear detonation.

Prior to nuclide analysis, samples of sufficient activity were submitted to gamma spectrum analysis in a single channel analyzer to establish whether some enexpected isotope was contributing to the activity.

The nuclides were isolated<sup>3</sup> from samples which exhibited the greatest beta activity and were mounted on brass planchets. Corrections for geometry, forescatter, backscatter, self-absorption, and for window, air and pliofilm absorption were evaluated for Sr<sup>50</sup> by reference to data procured from a National Bureau of Standards solution. The beta counting efficiency correction for  $Ra^{105}$ ,  $Cs^{137}$ , and the total rare earths was made by comparison with a U<sub>3</sub>O<sub>3</sub> standard. An estimated error of the order of + 20 per cent may result from such comparison. Self-absorption, air, window and phofilm absorption were calculated from aluminum absorption curves of the respective nuclides. Absorption corrections for the total rare earths were calculated from the aluminum absorption curve derived from Ce<sup>144</sup>-Fr<sup>144</sup>. Beta measurements were made on the first shelf of an end-window, gas flow, proportional counter with a geometry of 46 per cent for the U<sub>3</sub>O<sub>8</sub> standard mounted on aluminum. In the case of Sr<sup>20</sup>, measurements were also made with Geiger counters with a geometry of 25 and 30 per cent. Samples were analyzed for calcium by a flame photometric method so report Sr 90 in subshine units (defined as 2.2 disintegrations of strentium-90 per minute per gram of calcium). The preparatory procedure involved wet-ashing the samples with furning nitric and perchloric acids and removing phosphates by percolation of the digest through an act a exchange column. The standard error in calcium determinations was in the order of 10 per cent.

• Or 0.001 microcuries of suontium-90 per kilogram of calcium,

BEST AVAILABLE COPY



11

. Article in the second second

The state of the second

## TABLE 3.1

| Sour                          | ce                                      | <u>F</u><br>No. of<br>Samples<br>Averaged | Cs <sup>137</sup>                   | Compos<br>Total<br>Rare<br>Earths | ition (p<br>Sr <sup>99</sup> | Ru <sup>106</sup>        |
|-------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------|-----------------------------------|------------------------------|--------------------------|
| Plant                         | Part                                    | PLANTS                                    |                                     | · · ·                             |                              | •                        |
| Portulaca                     | Whole                                   | 1                                         | 48.9                                | 39.2                              | 11.8                         | -                        |
| Papaya                        | Fruit                                   | 1                                         | 79.8                                | 17.8                              | 2.5                          | •                        |
| Coconut                       | Husk<br>Meat<br>Shell<br>Milk<br>Leaves | 3<br>2<br>2<br>1<br>2                     | 98.2<br>98.9<br>99.5<br>99.6<br>8.3 | 1.1<br>0.05<br>0.4<br>0.2<br>86.5 | 0.7<br>1.0<br>0.1<br>0.2     | -                        |
| Pandanus                      | Keys<br>Leaves<br>Air Root              | 2<br>2<br>2                               | 92.6<br>72.7<br>88.9                | 2.2<br>13.3<br>10.3               | 0.4<br>5.5<br>5.1<br>0.8     | 5.1<br>-<br>8.9          |
| Arrow Root                    | Tuber<br>Leaves                         | 1                                         | 75.4<br>11.7                        | 16.8<br>83.9                      | 1.0                          | 6.8<br>1.4               |
| • n *                         | -                                       | SOIL                                      |                                     |                                   |                              | •                        |
| Depth,                        | 0-1 in.                                 | 2                                         | 0.34                                | 83.8                              | 5.6                          | 10.0                     |
| Sour                          | ce                                      | WATER                                     |                                     |                                   |                              | 4 <b>1</b> 0 1           |
| Ciste<br>Well<br>Lago<br>Ocea | on                                      | 2<br>2<br>2<br>2                          | -<br>-<br>-                         | 64.4<br>100<br>94.5<br>100        | 35.6<br>0<br>5.5<br>0        | :<br>• : :<br>• :<br>• : |

Avarage Robbins Company Plants, Soil, and Water 

-10-

的复数,我们的人们就是我们就是我们的人们就是我们的人们就是我们的人们就是不是我们的人们的人们的人们就是我们就是我们就是我们的人们不是我们是我们就是我们我们的人们就 一些你们我们没有了了,我们就是你的人们们是我们们我们就是我们的人们的是你们,我们们就是你们的人们的人们的人们不是我们的人们不是我们的人们的人们,我们还不是我们都不是不是不是不是不是不是不是不是不是不是 你们我就是我们是你的你,我我们就是我们们就是我们们的,你们还是我们的人们,我们们就能不是我们的人们的人们的人们,你们不是你们的人们,你们不是你们的人们,你们还是我

the same th

male in diaste

[1] 教授的"新闻的"教育" (2) [1] [1] [1] "上的现在分词被逐步的过程的现在分词使把我们的人的人的人的人,只要不能把这些

. .....

.

State of the second sec

Confrage and

and the second particle of the second of the spectral part of the particle of the second second second second s

1

ara di sera da 🙀 Melekarakara sa makari di dakara ila Mana ya di di Melekara Angera di kamarakara di kata kata

. 1

South 1 to a

1.00

#### **RESULTS AND DISCUSSION**

In Table 3.1 the relative contribution of the nuclides recovered from plant, soil and water are recorded. The data from which these values were computed are shown in Table A.2, Appendix. In most cases the sum of the separate nuclides exceeded the gross beta activity, a result expected from the self-absorption of radiations which were uncorrected in the gross beta determinations. The notable exceptions were the leaves of arrowroot, pandanus and coconut, where only 57 to 85 per cent of the gross beta activity was represented by the nuclides sought. Gammaemitters other than those anticipated were not in evidence. Unfortunately, insufficient active samples precluded clarification of this discrepancy.

The primary contaminating isotope in coconuts, papaya fruit, pandanus keys and arrowroot tubers was  $Cs^{137}$ . Significant quantities of the rare earth components (16 to 18 per cent) were recovered from papaya and arrowroot tubers and only a small fraction from coconuts and pandanus keys. The  $Sr^{99}$  concentration in these specimens was uniformly low.

The nuclide composition of the leafy structures in the coconut palm and the arrowroot plant differed markedly from the respective nut and tuber. These structures accumulated the rare earth isotopes in exceedingly greater concentration than  $Cs^{137}$ . These relationships account for the observed gross beta-to-gamma ratio previously mentioned. Samples containing a preponderance of the rare earth radioelements would be expected to give a higher beta-to-gamma ratio than those composed almost entirely of  $Cs^{137}$ .

Table 3.1 shows further that plant leaves contained varying percentages of Ru<sup>106</sup> and that the concentration of this isotope represented only a small fraction of the total activity.

In portulaca, a widely distributed plant, the nuclide composition was 49, 39 and 12 per cent  $Cs^{137}$ , rare earths, and  $Sr^{90}$ , respectively.

Despite the inactivity of the water samples, rare earth and  $Sr^{90}$  determinations were performed since self-absorption as well as the size of aliquot used may have obscured the activity.  $Cs^{137}$  and  $Ru^{106}$  were not determined because self-absorption does not play an important role in the detection of these gamma-emitters. The results of these analyses are shown in Tables 3.1 and A.2. With the exception of a sample of cistern water which had a significant quantity of  $Sr^{90}$ , the observed activity was attributable to the rare earths.

With regard to soil, the average of two complete assays gave 84 per cent rare earths, 10 per cent  $Ru^{106}$ , 5 per cent  $Sr^{90}$  and less than 1 per cent  $Cs^{137}$ .

-11-

an Marine Strand Charles Barray and



٠.

S. 14 197 .....

المرقبة والمتحدث

1. 25 . 2.5

والتسريد

Lines

#### TABLE 3,2

Sunshine Units of Plant, Water and Soil Samples PLANTS Sr<sup>90</sup> Seriple Calcium Sinchine Units Sample Island (d/m/sample) (2,2 d/m Gr<sup>90</sup>/g Ca) Weight Content (g) (mg) 223 178  $2.53 \times 10^4 + 250$ **Fortulaca** Enlactck 10000 + 100 Gejen 23 398 5380 + 106 6140 + 120 Papsya Rongelap 240 338 240 + 33 322 + 44 200 Coconut Husk Rongelap 162 340 + 28 950 + 78 Enlac:ok 23 58 150 + 24 1200 + 190 Gejen 360 47 4060 + 240420 + 24 450 Coconut Meat Rongelap 28 110 + 60 1801 <u>+</u> 960 Enlactok 160 200 + 320 40 18 + 29 Gejen 190 20 28 + 23 635 + 520 25 + 18 Coconut Shell Enlastok 90 16 708 + 500 NEA (3) Enlactok 120 8 0 Gejen 85 23 NDA 0 Coconut Milk 20 Gejen 140 41 + 21 955 + 500 197 + 37 Eniwetak 35 Coconut Leaves 89 1300 + 250 Utirik 33 153 NDA Gejen 170 19.5 157 + 23 3600 + 520 Coconut, Whole Enlactok 305 1140 250 + 26 103 + 10 Arrowroot Tuber Sifo 280 383 73 + 16 86 + 19 Gejen 103 114 198 + 35 780 + 140Arrowroot Leaves 385 290 + 44 340 + 50 and Stalks Gejen 15 1000 ± 50 Pandanus Keys Enlactok 130 28 5600 + 230 1400 + 150 Enlactok 215 119 122 21 460 + 41 3200 + 300 Pandamus Leaves Enlactok 10 55 Gejca 32 43 NDA ۵ Enlactok 43 23 20 + 33 390 + 650 Pandanus Air Root 105 + 27 3360 + 840 Gejen 30 14

-12-

an an Araba Salarang Anarah na panah salarang Anarah Araba Salarang Anarah salarang Anarah Salarang Angela salarang Angela salarang (1) A set of the constant of the set of t

Sunshine Units of Theory Manne and Soil Samples

| Sample           | Island   | SOILS<br>Calcium in kg of Soil (g) | Sr90<br>(d/m/liter) (2                | Sunshine Unin<br>2.2 d/m Sr <sup>30</sup> /g Ca) |
|------------------|----------|------------------------------------|---------------------------------------|--------------------------------------------------|
| Depth, (0-1 in.) | Rongelap | 316                                | $3.3 \times 10^4 + 1.3 \times 10^4$   | 3 47 ± 2                                         |
|                  | Gejen    | 341                                | $5.26 \times 10^6 \pm 5.2 \times 1$   |                                                  |
| · · ·            | Enlactok | 352                                | $2.1 \times 10^4 + 2.2 \times 10^4$   |                                                  |
|                  | Sifo     | 350                                | $1.3 \times 10^4 + 1.0 \times 10^4$   |                                                  |
|                  | Eniwetak | 360                                | $5.8 \times 10^4 + 2.3 \times 10^4$   |                                                  |
|                  | Utirik   | 268                                | $4.8 \times 10^4 \pm 3.0 \times 10^4$ | <sup>3</sup> 92 <u>+</u> 6                       |
| N                |          | WATER                              | · .                                   |                                                  |
|                  |          | Calcium in Liter (mg)              | Sr <sup>90</sup> (d/m/liter)          | •<br>•                                           |
| Cistern          | Rongelap | 48                                 | 1180 + 10                             | 1.1 x 10 <sup>4</sup> + 230                      |
| Gissera          | Utirik   | 61                                 | 20 + 14                               | 147 + 104                                        |
| Well             | Utirik   | 88                                 | 39 <u>+</u> 10                        | 201 <u>+</u> 54                                  |
|                  | Utirik   | 80                                 | NDA                                   | 0                                                |
|                  | Eniaetok | 2300                               | NDA                                   | 0                                                |
| Ocean            | Rongelap | 352                                | NDA                                   | 0                                                |
| UCC44            | Uthrik   | 408                                | NDA                                   | 0                                                |
|                  | Eniwetak | 402                                | NDA                                   | 0                                                |
| Lagoon           | Rongelap | 456                                | 190 <u>+</u> 68                       | 188 <u>+</u> 68                                  |
| Lagoou           | Eniwetak | 137                                | NDA                                   | ō                                                |
|                  | Utirik   | 441                                | 204 + 150                             | 208 + 150                                        |

(a) NDA indicates no detectable activity

the second s

-13-

a sugar te a de la degeneración de la com

· · · ·

والمراجعة ومعماقين ويورج والمقام والمعامين والتك

e e ki e t

and the second second

Sec. ex

د این ۲۰۱۹ میں در ۱۹۹۹ کی درواند ۱۹۹۹ کی دور

49-26-39-55

1.1

٤.

Where comparisons were available, the relationships around nuclides in the current survey in the edge agreed with tables the converted The only sharp difference was the higher percentage of  $Cs^{s,j}$  in the one papaya analyzed in the present study.

In the previous chapter it was mentioned that coconuts exhibited greater beta activity in the present survey than in the previous one. Interpretation of the nuclide data in coconuts and soils indicates that this phenomenon is concerned with the apparent capacity of coconuts to concentrate cesium. Analyses reveal that the activity in coconuts was contributed almost entirely by  $Cs^{137}$ . The argument that this nuclide was made available to the root system in greater concentration by preferential translocation during this one year interval is untenable since the concentration of  $Cs^{137}$  in relation to other nuclides in the upper surface of the soil is essentially unchanged.

Further substantiation of the concentrating capacity of coconuts is found when the quantity of  $Cs^{137}$  in the coconut is compared with that of the soil. The soil concentration in the area of the root system which is situated well below the surface is lower than that of the top inch of soil. Yet, as shown in Table A.2, the  $Cs^{137}$  concentration of coconuts often exceeded even that which was present in the surface soil.

The sunshine units are recorded in Table 3.2 for the plant, water and soil samples analyzed. The table includes the  $d/m \ Sr^{50}$  for the samples and the standard error of measurement. The standard error was large in samples with less than 100  $d/m \ Sr^{33}$ . Two instruments were used in counting the activity: a gas flow proportional counter with a background of about 40 c/m and Geigas counters with backgrounds of 20 and 25 c/m. Although the counting time was routinely 20 min, a sizable statistical error was involved in measurements of samples whose rate was only one to several counts above background.

To improve the counting statistics, a number of samples with low activity was permitted to stand until  $Sr^{90}$  and  $Y^{90}$  were in equilibrium. Both radiations were counted, an appropriate correction was applied for self-absorption of  $Sr^{90}$ , and the  $Y^{90}$  contribution was mathematically subtracted.

Of the plant samples examined, portulace had the highest sunshine units; values were 6140 and 25,000 for the two specimens analyzed. In coconuts the activity of mean, which and minimized was not statistically significant, whereas the value for husks ranged from 1200 to 4000. Pandanus keys and pandanus air root values also fell within this range. Arrowroot leaves, stalks and tubers were significantly lower, ranging from 86 to 780 sunshine units.

· Harris and the second

en general an an an an an general a statue

计可读 爱望于这句话的过去式



ALL AND AND THE ABULAT OF

. . . . .

A

and the second sec

·古马尔斯住住了《中国新闻》 (2

19 - Ch

A. S. Sec. 5.

STREETS CONTENTS PLETS WERE STREET.

- **1**, 11

网络装饰树 建活动的使动动 水石石

-15-

A second second second

· · · ·

S. P. S. Mark

-

The second second sold in the

and the second second

in the fighter at the co

-

13 44 der

The sunshing write in the Oth Lin laver of soil on five islands were 17 to 92; the exercision of them and a verse of idud.

Strontium-90 was not detectable in most water samples; however four samples showed some activity with sunshine units between 150 to 200. A sample of cistern water from Rongelap, the notable exception, had a value of 10,000.

Noteworthy is the fact that the activity in portulaca, coconut husks, pandanus keys and air roots, as well as a sample of potable water, exceeded the maximum tolerance level of  $Sr^{90}$  (Ref. 6).

# 

. . . . . the second second ана стана В стана с

 A state of the second se A second sec second sec

19 1 1 1 1 1 1 a state of the second state of .

1

ŧ

١

the state of the second state of the

### (This page is blank)

.

-16-

. .

1. 14 1.34

NUMPER DESCRIPTION 2.4. W. 7. 网络弗尔尔教理会 网络中心 Real Level and the state of the second second second and approximate gener here and an an an article give a segme term in group and an a stage for the second the section of the solution of 

#### CHAPTER 4

#### RESIDUAL RADIOACTIVE CONTAMINATION IN FISH, MARINE INVERTEBRATES, RATS AND BIRDS

#### PROCEDURE

Fish and birds were collected from the following islands of the Rongelap Atoll: Rongelap, Eniaetok, Gejen and Kabelle. In addition, four rats and one rooster were collected on Rongelap Island. Fish and marine invertebrates were also collected from Sifo Island in the Ailingnae Atoll; Eniwetak Island in the Rongerik Atoll; Utirik Island, Utirik Atoll; and Likiep Island, Likiep Atoll. Marine specimens were collected in the lagoons off the shores of the islands.

The fish were collected following the detonation of depth charges of dynamite. The birds (terns) were shot. The rats were collected in traps. All the specimens collected were placed in individual plastic bags and immediately frozen with dry ice. The frozen samples were transported to the USNRDL where they were analyzed for gross radioactivity and for the presence of their specific radionuclide content.

The small fish were analyzed whole and the marine invertebrates were analyzed either whole or after removal from the shell. A number of the large fish were separated into skeleton, muscle, head, gills, liver, skin and viscera for a study of the distribution of the internally deposited radionuclides.

The samples were dried, ashed and the gross beta and gamma activity determined in the manner previously described.<sup>3</sup> The gamma activity is reported in d/m ( $Co^{60}$  equivalent); the beta activity in d/m ( $Sr^{00}$  equivalent). These "equivalent units" were derived from a comparison with the activity of standards of  $Sr^{00}$  and  $Co^{60}$  counted in an identical manner with the samples as described in Chapter 2.

Radiochemical analyses were performed to determine the concentration of several pro-sciected radionuclides and of others whose presence was indicated by a single-channel gamma analyzer. Calcium was determined with a flame spectrophotometer. The radiochemical techniques employed are described in an earlier report.<sup>5</sup> Cobalt-60 was determined by a method previously described<sup>7</sup> and Zn<sup>65</sup> by the mercuric thiocyanate procedure.

-17-

| TAB | LE | 4.1 |  |
|-----|----|-----|--|
|-----|----|-----|--|

1

T LAN MARKEN

# Summary of Beta and Gamma Activity in Fish and Marine Invertebrates

|                   |                   | Fish           |                                  |                   | rabs          |                     |             | Clams |                                |                   | Snails  |                |
|-------------------|-------------------|----------------|----------------------------------|-------------------|---------------|---------------------|-------------|-------|--------------------------------|-------------------|---------|----------------|
| Island            | No. of<br>Samples | A ci<br>(d/m/k | tivity<br>g x 10 <sup>-4</sup> ) | No. of<br>Samples | Ac:<br>(d/m/k | tivity<br>g x 10-4) | March       | Act   | viry<br>3 x 10 <sup>-4</sup> ) | No. of<br>Samples | Acu     | vity<br>x 10-4 |
|                   | -                 | ß              | <u> </u>                         |                   | ß             | 8                   |             | ß     | ้ช                             | oumpies           | ß       | ·<br>ح         |
| Rongelap Atoll    |                   |                |                                  |                   |               |                     |             |       |                                |                   |         |                |
| North: Gejen      | 8                 | 24.5           | 78.8                             | 2                 | 28            | 87                  |             |       |                                | 4                 | 648     | 513            |
| Kabelle           | 10                | 14.9           | 55,4                             |                   |               |                     |             |       |                                | • 1               | 17.7    | 3 <b>,9</b>    |
| Central: Enlactok | 5                 | 19.3           | 45.1                             | . 1               | 4.5           | 14.1                | 1           | 4.5   | 8.8                            | •                 | A / . I | 43,₹           |
| South: Rongelap   | 5                 | 17.7           | 32                               | 6                 | 25.4          | 24.5                | 2           | 23    | 56                             | 2                 | 31      | 51             |
| longerik Atoll    |                   |                |                                  |                   |               |                     |             |       |                                |                   |         |                |
| Eniwetak          | 8                 | 2.2            | 7.8                              | 1                 | 2.8           | 18.3                |             | ŗ     |                                |                   |         |                |
| lilingnae Atoli   |                   |                |                                  |                   | :<br>:        |                     |             | ÷     |                                |                   | • •     |                |
| Sifo              | 6                 | 4.5            | 22.7                             | 8                 | 21.9          | 14.5                | 1           | 6,4   | 15,0                           |                   |         |                |
| Itirik Atoll      |                   |                |                                  |                   |               |                     |             |       |                                | •                 |         |                |
| Utirik            | 8                 | 1.6            | 2.1                              |                   |               |                     |             |       |                                | 8                 | 006 .   | 2.8            |
| Ikiep Atoll       |                   |                |                                  |                   |               |                     |             |       |                                | • •               | )       | -              |
| Likiep            | 8                 | 2.6            | 1.3                              | ٠                 |               |                     |             |       | • .                            |                   |         |                |
|                   |                   |                |                                  |                   |               |                     | · · · · · · |       | ****                           |                   |         |                |
|                   |                   |                |                                  | ·                 |               |                     | •           | ;     |                                |                   |         |                |
|                   |                   |                |                                  |                   |               |                     |             |       |                                |                   |         |                |
|                   |                   |                |                                  |                   |               |                     |             |       |                                |                   |         |                |
|                   |                   |                |                                  |                   |               | • .                 |             |       |                                |                   |         |                |
| ,                 |                   |                |                                  |                   |               | •                   | 40 C        | •     |                                | · · ·             | · · · · |                |
|                   |                   |                |                                  |                   |               |                     |             |       |                                | × .               |         |                |

-18-

1

A State of the

11日本の「日本学校の日本の日本の一日本」

「「「「「「「」」」」」

1.1

### RESULTS AND DISCUSSION

BOOKS & The Production

114

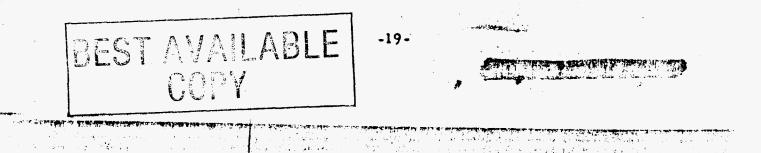
ġ.

14

e gan

يواريد ورجو ورجوا والمجار والمرجو والمحافظ

Readily detectable levels of radioactivity in land and marine animals of the Marshall Islands contaminated by the 1954 nuclear detonation were detected in February 1956. The residual radioactive contamination expressed in terms of gross bets and gamma activity of the tissues of 85 fish and marine invertebrates is presented in Table 4.1. The complete data appear in Table A.3, Appendix.


Considerable variation was observed in the concentration of activity per unit weight of individual fish and marine invertebrates from the same area as well as from different geographic locations. Part of this variation may be attributed to differences in feeding habits. However, no correlation between the level of radioactivity and the eating habits of the fish (carnivorous, herbivorous, omnivorous) could be ascertained. Of course, currents and localized concentrations of radionuclides may also play a role in determining concentrations of residual activity in the lagoon fish. In Table 4.1 an average value for the analysis of the fish in each locality is reported.

Fish and invertebrates caught in the northern section of the Rongelap Lagoon had the same level of beta activity but twice the gamma activity of fish from the southern section of the lagoon (Table 4.1). The ratio of activity in marine invertebrates between the north and south ends of the lagoon was considerably lower than that observed one year following the detonation. This finding suggests a redistribution of activity from the higher concentration originally existing in the northern end of the lagoon. The pattern of the 1954 fallout was such that the activity on the northernmost islands was tenfold higher than on Rongelap Island, at the southern end of the atoll.

The internally deposited activity in the fish was only very roughly proportional to the external radiation dose over that island.

Crabs and clams were found to have a residual concentration of betaemitting radionuclides of about the same level as fish from the corresponding locality (Table 4.1). This is in contrast to the larger differences noted between crabs and clams as compared to fish at one year postdetonation.

Snails from Cojer had econsiderably higher concentrations of activity than fish from the same locality, as was noted in the one-year resurvey. The higher level of activity of the snails may be related to their habit of feeding on the bottom of the lagoon where higher concentrations of radionuclides were found. The relatively lower values of activity in clams is



el esta de la composición de la composi

医性叶炎 医腹侧端骨下的复数形的复数 计公司公司

and a summer

TABLE 4.2

ï

|                  |                      | Wet        |              |              |            |              | Radio      | activity   | (d/m/             | timue :         | x 10 <sup>-4</sup> ) |            |            |            |                 |         |
|------------------|----------------------|------------|--------------|--------------|------------|--------------|------------|------------|-------------------|-----------------|----------------------|------------|------------|------------|-----------------|---------|
| Island           | Fish                 | wt         | To           | otal         | Sk         | in           | He         |            | Mus               |                 | Eon                  |            | Gi         | n          | Vice            | cia     |
|                  |                      | (g)        | ß            | Y            | ß          | 8            | ß          | X          | B                 | 8               | ß                    | 8          | ß          | 8          | ß               | Z       |
| ongelap Atoll,   | South                |            |              |              |            |              |            |            |                   |                 |                      | •          |            |            |                 |         |
| Rongelap         | Goat                 | 218        | 8.8          | 15.5         | 0.2        | 2.4          | 0.45       | 3.3<br>0.7 | $1.1 \\ 0.4$      | $2.1 \\ 0.5$    | $1.5 \\ 1.4$         | 2.7<br>2.6 | 0.6<br>0.3 | 2.2<br>0.3 | 4.0<br>1.9      | 2<br>1  |
| Rongelap         | Grouper<br>Averas    | 452        | 5.2          | 5.7          | 0.4        | 0.3          | 0.8        | 2.0        | 0.4               | 1.3             | 1.4                  | 2.7        | 0.5        | 1.3        | 3.4             | 1/2     |
|                  | TACT AS              | se         | 1.0          | Th.0         | 0,0        | 1.0          | .00        | 2.0        | v.0               | 4.9             |                      |            |            |            |                 |         |
|                  | Per cent of total ac | ctivity    | 100          | 100          | 4.2        | 12.1         | 8.8        | 18.7       | 11.2              | 12,1            | 21.0                 | 25.2       | 7.0        | 12,1       | 47.7            | 13      |
|                  |                      |            |              |              |            |              |            |            |                   |                 |                      |            |            |            |                 |         |
| ongelap Atoll,   |                      | 1154       |              | 07.0         | 1.0        | 110          |            | 24.7       | 5.4               | 16.8            | 5.5                  | 15.7       | 1.7        | 01         | R 1             | 1.5     |
| Gejen<br>Kabelle | Snapper .<br>Snapper | 735        | 26.3<br>12.3 | 87.0<br>18.5 | 1.0<br>1.0 | 11.8<br>11.2 | 6.6<br>4.5 | 1.9        | 1.0               | 0.7             | 2.4                  | 4.4        | 0.5        | 2.1<br>1.1 | 6.1<br>2.9      | 6       |
| Kabelle          | Parrot               | 1957       | 24.8         | 71.3         | 1.1        | 8.9          | 8.5        | 20.9       | $\frac{2.4}{0.0}$ | 6.6             | 7.0                  | 23.4       | 0.8        | 2.7        | 5.4             | 6<br>20 |
|                  | Averag               | ze         | 21.1         | 58,9         | 1.0        | 10.6         | 6.5        | 15.8       | 2,9               | 8,0             | 5.0                  | 14.5       | 1.0        | 2.0        | <b>4</b> . i    | 20      |
|                  | Per cent of total ad | divity     | 100          | 100          | 4.8        | 17.3         | 30.8       | 25.9       | 13,7              | 13,1            | 23.7                 | 23.7       | 4.8        | 3,3        | <b>22.</b> 3    | 16      |
|                  |                      |            |              |              | . •        |              |            |            |                   |                 |                      |            | · ·        |            |                 |         |
| ilingnae Atoll   |                      |            |              |              |            |              |            |            |                   | • •             | ·                    |            |            |            | • •             |         |
| Sifo             | Snapper              | 640        | 3.2          | 38.9         | 0.3        | 5.9          | 0.7        | 8.8        | 0_6               | 6.2             | 0.5                  | 10,4 %     | 0.1        | 2.7        | 0,9             | 3       |
|                  | Per cent of total ad | tivity     | 100          | 100          | 9.7        | 15,2         | 22,5       | 25.4       | 19,3              | 15,9            | 16.1                 | 27.2       | .3.2       | 7.0        | 29.0            | 9       |
|                  |                      |            |              | •            |            |              |            |            |                   |                 | ; <b>-</b>           | •          |            | :          |                 |         |
| longerik Atoll   | • 1 1                |            | A 49         |              | ^<br>      |              | 00         | .55        |                   | .27             | .08                  | .39        | .02        | .08        | 04              | 0       |
| Eniwetak         | Squinel              | <b>387</b> | 0,41         | 2,0          | .02        | .35          | .23        | •00        |                   | 1 20            | ••••                 | . ••••     |            | •00        | : ,04           |         |
|                  | Per cent of total a  | ctivity    | 100          | 100          | 4.9        | 17.3         | 55         | 27.2       | 9.8               | 13,4            | 14.6                 | 19.3       | 4.9        | - 4,0      | 9_8             | 18      |
|                  |                      | :          |              |              |            |              | <u></u>    |            |                   |                 |                      | -          | -          | •          |                 |         |
| hirik Atoll      | \;<br>               | 405        |              | 0.07         | ^          | .24          | 0          | .09        | .15               | .22             | .1                   | 3.13       | 0          | .04        | 35              | 0       |
| Utirik           | Parrot               | 425        | 0.66         | 0,87         | 0          | .44          | U          | .08        | 10                | .24             |                      | 9.13       | · •        |            | ., <del>.</del> | . •     |
| •                | Per cent of total a  | ctivity    | 100          | 100          | 0          | 27,6         | 0          | 10,3       | 22.7              | 25 <b>.</b> 3 ′ | 19,7                 | 15.0       | <b>0</b> . | 4.6        | 57.5            | 17      |
|                  |                      |            |              |              |            |              |            |            | · .               |                 | :                    |            | •. •       |            |                 |         |
| likiep Atoll     |                      |            |              |              |            |              | <b>`</b> . |            |                   |                 |                      |            |            |            |                 |         |
| Likiep           | Snapper              | 453        | 1,1          | 2.2          | 0          | 0            | . 0        | .02        | 0,1               | 0,2             | ° 0                  | 0          | 0          | 0          | ĩ               | 2       |
|                  |                      |            |              |              |            |              |            |            |                   |                 |                      |            | 3          |            |                 |         |

-20-

×.....

ta train gentleden an 1985 - 1985 - 1985 1985 - 1985 - 1985

4

1.15

· Handler ·

and the second s

A Martin and Anna Anglia Anglia
 A Martin and Anglia Anglia
 A Martin and Anglia Anglia
 A Martin and Anglia Anglia

probably related to the fact that claims for a printingly to blatters which have low levels of activity.

The beta-to-gamma ratio (as determined by the method used here) in whole fish varied considerably but was approximately 1:2 in most of the specimens analyzed. This is in contrast to the 1:4 ratio observed at one year post-detonation. This ratio 1:2 is approximately the ratio of the beta-to-gamma activity of  $\mathbb{Z}n^{65}$ , the principal radionuclide found in fish. Physical and radiochemical analysis of a number of fish indicated, as previously noted,<sup>3</sup> that the high gamma-to-beta ratio was accounted for by the gamma from the induced activity,  $\mathbb{Z}n^{65}$ .

The internal distribution of radioactivity in the tissues of fish (primarily carnivores) collected in the various lagoons indicated that an average of 20 per cent of the total beta and gamma activity was found in the skeleton (Table 4.2). The head contained an average of 30 per cent of the total beta and 21 per cent of the gamma activity. Muscle contained approximately 14 per cent of the total beta and gamma activity. The activity of the viscera and contents varied considerably but contained on the average about 33 per cent of the total beta activity and 16 per cent of the total gamma activity. The remainder of the activity was found on the skin and gills. The internal distribution of activity, particularly the muscle activity concentration, was very similar to that found in the fish collected and analyzed at one year post-detonation.

The results of the radiochemical analyses for specific radionuclides are presented in Table 4.3. The most important finding is the very high percentage of the total activity in fish which is contributed by  $Zn^{65}$ . The manner in which this induced activity is concentrated has not been determined. The  $Zn^{65}$  in fish is distributed fairly evenly among the various tissues. This contrasts with the localization of  $Zn^{65}$  in the liver of mammals following ingestion. The  $Zn^{65}$  was not found in clams, crabs or snails, with the exception of one helmet snail from Kabelle Island.

The rare earth group of fission products constituted a small percentage of the total beta activity in clams and fish. The rare earth elements as a group do not appear to be selectively localized. The rare earth activity of the crabs was high, an average of 20 per cent of the total beta activity. Snails concentrated the largest amounts of rare earth elements.

The  $Sr^{90}$  concentration was very low, contributing generally a fraction of 1 per cent of the total beta activity. The  $Sr^{90}$  content is of particular importance, since it is the radionuclide of greatest potential hazard. The  $Sr^{90}$  hazard derives principally from its long radioactive half-life (26 yr) and also from its high fission yield and its availability to biological organisms.  $Sr^{90}$  activity and sunshine units are reported for a number of samples in Table 4.3.

والمراجع وأرأر أنجاب والوصوف أرا

CONTRACTOR CONTRACTOR STATE

| Sample<br>No. | Sample                                                  | Tissue  | Wet<br>Wr.<br>(g) | Ca<br>(mg) | Beta Activity<br>(d/m sample)<br>x 10 <sup>-4</sup> ) | Gamma Activity<br>(d/m/sample<br>x 10 <sup>-4</sup> ) | Nuclide                                       | Nuclide Activity<br>(d/m/sample<br>x 10 <sup>-4</sup> ) | Per Cent of<br>Total<br>Activity | Sondiins Units(2)                         |
|---------------|---------------------------------------------------------|---------|-------------------|------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------|----------------------------------|-------------------------------------------|
| longelap      | Island                                                  |         |                   |            |                                                       | ······                                                |                                               |                                                         |                                  |                                           |
| 1502C         | Goat Fish                                               | Boae    | 29                | 860        | 1.5                                                   | 217                                                   | R.E.G)                                        | NDA(c)                                                  | 0                                |                                           |
|               |                                                         |         |                   |            |                                                       | •                                                     | Sr <sup>90</sup><br>Zn <sup>65</sup>          | 11 <u>+</u> 1.7<br>240                                  | 7 <b>,</b> 3<br>89 -             | E 17 2 90                                 |
|               |                                                         | Viscera | 10                | 37.5       | 4.9                                                   | 2.8                                                   | R.E.<br>Sr <sup>90</sup><br>Zn <sup>65</sup>  | 0.68<br>NDA<br>250                                      | 0,14<br>0<br>89,3                |                                           |
|               |                                                         | Skin    | 28                | 337        | 0.2                                                   | 2,4                                                   | R.E.<br>Sr <sup>90</sup><br>Zn <sup>65</sup>  | 2.5<br>0.34 <u>+</u> 0.26<br>230                        | 12.5<br>1.7<br>95,8              | н<br>1<br>- К. 4 с. <b>34</b><br>-        |
|               |                                                         | Muscle  | 87                | 111        | 1.1                                                   | 2.1                                                   | R. E.<br>Sr <sup>90</sup><br>Zn <sup>65</sup> | NDA<br>0.46 <u>+</u> 0.76<br>190                        | 0<br>0.4<br>90.6                 | 2 42 <b>2 313</b><br>(1 42 <b>tinued)</b> |
| (b) R.E       | shine Unit = 0.0<br>. = Rare Earth C<br>A = No Detectal | koup    |                   | •          | . :                                                   |                                                       | · · · · ·                                     |                                                         |                                  |                                           |
|               |                                                         | . •     |                   |            |                                                       |                                                       | •                                             |                                                         |                                  |                                           |
|               | •                                                       |         |                   | ••.        |                                                       | · · · · ·                                             | ,<br>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,     |                                                         |                                  | •                                         |

.

τ. 3 .

Long States

۰,

.

## +-11

TABLE 4.3

| Sample<br>No.            | Sample              | Tissue      | Wet<br>Wt.<br>(g) | Ca<br>(mg) | Beta Activity<br>(d/m/sample<br>x 10 <sup>-4</sup> ) | Gamma Activity<br>d/m/ample<br>x 10 <sup>-4</sup> ) | Nuclide                                       | Nuclide Activity<br>d/m/sample<br>x 10 <sup>-4</sup> ) | Per Cent of<br>Total<br>Activity | Suchae Unix(A       |
|--------------------------|---------------------|-------------|-------------------|------------|------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|--------------------------------------------------------|----------------------------------|---------------------|
| 1509                     | Killer Clam         | Soft Tissue | 1800              | 743        | 20                                                   | 33                                                  | R.E.<br>Sr <sup>90</sup><br>Co <sup>60</sup>  | NDA<br>2.4 <u>+</u> 0.69<br>2000                       | 0<br>0,12<br>63.4                | 1₀ û <u>≤</u> 42    |
| 151 <b>3</b>             | Killer Ciara        | Soft Tisme  | 882               | 1565       | 31                                                   | 83                                                  | R. E.<br>Sr <sup>90</sup><br>Co <sup>60</sup> | 77<br>83.8 <b>+ 0.90</b><br>7370                       | 2.5<br>2.7<br>89                 | 24 3 31             |
| 1520 <b>A</b>            | Langourtă<br>Crab   | Coft Tissue | 79                | 330        | 1.3                                                  | 2.1                                                 | R.E.<br>Sr <sup>90</sup>                      | 26<br>N <b>DA</b>                                      | 20<br>0                          | 0                   |
| 1520C                    | Red Eye<br>Crab     | Soft Tissue | 57                | 2343       | 0.75                                                 | 3.8                                                 | R. E.<br>Sr <sup>90</sup>                     | 37<br>0 <b>.13 <u>+</u> 0.07</b>                       | 49<br>0,2                        | -<br>1. :⊵1.        |
| 15200                    | Red Spotted<br>Crab | Soft Tissue | 73                | 2900       | 0.76                                                 | 0,43                                                | R. E.<br>Sr <sup>90</sup>                     | 15<br>1 <b>.</b> 28 <u>+</u> 0.18                      | 20<br>1.7                        | :<br>: : : <b>3</b> |
| 1520 <b>B</b>            | Coconut<br>Crab     | Soft Tissue | 114               |            | 3,5                                                  | 3.1 '                                               | Cs 137<br>R. E.                               | 26<br>Q.58                                             | 7,4<br>16.5                      |                     |
| <u>Kabelle 1</u><br>1538 | Snapper<br>Fish     | Muscle      | 281               | 85         | 0.95                                                 | 0.69                                                | R.E.<br>Sr <sup>90</sup><br>Zn <sup>65</sup>  | 4.1<br>NDA<br>58                                       | 4.2<br>0<br>84.2                 | 0                   |
|                          |                     | Skin        | . <b>89</b>       | 987        | 1                                                    | 4.1                                                 | R.E.<br>Sr <sup>90</sup><br>Zn <sup>65</sup>  | 2.4<br>0.53 <u>+</u> 0.76<br>380                       | 2,4<br>0,5<br>92,7               | 2<br>24 <u>+</u> ≎4 |

ĥ.

ことのという

# Radiochemical Analysis of Biological Specimens from Rongelap Atoll

| Sample<br>No. | Sample                       | Tissue  | Wet<br>Wt.<br>(g) | Ca<br>(mg)   | Beta Activity<br>(d/m/tample<br>x 10 <sup>-4</sup> ) | Gamma Activity<br>(d/m/sample<br>x 10 <sup>-4</sup> ) | Nuclide                                       | Nuclide Activity<br>(d/m/tample<br>x 10 <sup>-4</sup> ) | Per Cent of<br>Total<br>Activity | Sundiae Units                               |
|---------------|------------------------------|---------|-------------------|--------------|------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------|----------------------------------|---------------------------------------------|
|               | · ·                          | Fone    | 141               | 1842         | 2.4                                                  | 4,4                                                   | R. E.<br>Sr <sup>90</sup><br>Zn65             | 19<br>3.0 <u>+</u> 0.36<br>440                          | 7.9<br>1.2<br>100                | 73 <u>+</u> 3                               |
| 2             | <b>,</b> .                   | Viscera |                   | <b>2413</b>  | 2.7                                                  | 6.3                                                   | R. E.<br>Sr <sup>90</sup><br>Zn <sup>65</sup> | 120<br>7.85 <u>+</u> 0 <b>.94</b><br>530                | 44<br>2.9<br>84,2                | 147 ± 18                                    |
| 1540          | <sup>b</sup> Grouper<br>Fish | Whole   | 176               | 1630         | 0,75                                                 | 6                                                     | R. E.<br>Sr <sup>90</sup><br>Zn <sup>65</sup> | NDA<br>0.79 <u>+</u> 0.17<br>580                        | 0<br>1.0<br>97                   | <b>2</b> 2 <u>+</u> 4                       |
| 1544          | Parrot<br>Fish               | Bone    | 449               | 1905         | 7.0                                                  | 23,4                                                  | R.E.<br>Sr <sup>90</sup><br>Zn <sup>65</sup>  | 5<br>13.7 <u>+</u> 1.0<br>1870                          | 0.7<br>2<br>79.8                 | <b>82</b> 6 <u>+</u> 2 <b>2</b>             |
|               | •                            | Gill    | 56                | <b>4</b> 28  | 0.83                                                 | 2.7                                                   | R. E.<br>Sr <sup>00</sup><br>Zn <sup>65</sup> | 3 <b>.9</b><br>0.55 <u>+</u> 0.44<br>180                | 4.7<br>0.7<br>66.8               | <b>58 <u>+</u> 46</b> <sup></sup>           |
| ·             |                              | Head    | 280               | <b>79</b> 20 | 8,5                                                  | 20.9                                                  | R. E.<br>Sr <sup>90</sup><br>Zn <sup>65</sup> | <b>3.7</b><br><b>0.97 <u>+</u> 0.52</b><br>1670         | 0,4 · · ;<br>0,1<br>80           | 6 <u>+</u> 0 «<br><u>Co</u> sta <b>ned)</b> |

-----

11.1

Eca

Ň

# Radiochemical Analysis of Biological Specimens from Rongelap Atoll

| Sample<br>No.       | Sample          | Tissue      | Wet<br>Wt.<br>(3) | Ca<br>(mg)   | Beta Activity<br>(d/m/ample<br>x 10 <sup>10</sup> y | Gamma Activity<br>(d/m/sample<br>x 10 <sup>-4</sup> ) | Nuclide                                       | Nuclide Activity<br>(d/m/sample<br>x 10 <sup>-4</sup> ) | Per Cent of<br>Total<br>Activity | f a se d <b>ine</b><br>(17) a <b>s(4)</b> |
|---------------------|-----------------|-------------|-------------------|--------------|-----------------------------------------------------|-------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------|----------------------------------|-------------------------------------------|
|                     |                 | Viscers     | 258               | 11450        | 5                                                   | 8.3                                                   | R. E.<br>Sr <sup>90</sup><br>Zn <sup>65</sup> | NDA<br>2.5 <u>+</u> 1.38<br>820                         | 0<br>0.3<br>93                   | 10 + 5                                    |
| 737<br>Gejen Island | Helmer<br>Snail | Soft Tissue | 271               | 224          | 4.8                                                 | 11.9                                                  | R. E.<br>Sr <sup>90</sup><br>Zn <sup>65</sup> | 59<br>1.35 <u>+</u> 0 <b>.34</b><br>1090                | 12.3<br>0.3<br>91.6              | 279 g - <b>39</b><br>2                    |
| 1621                | Snapper<br>Fish | Head        | 219               | <b>3</b> 250 | 6.6                                                 | 24.7                                                  | R. E.<br>Sr <sup>90</sup>                     | NDA<br>1.65 <u>+</u> 2.4                                | 0                                | 2 3                                       |
|                     |                 | Skin        | 73                | 1315         | 1.0                                                 | 11.8                                                  | R. E.<br>Sr <sup>90</sup>                     | NDA<br>0.68 <u>+</u> 0.48                               | 0<br>0.7                         | 26                                        |
|                     |                 | Bons        | 173               | 3270         | 5.5                                                 | 15.7                                                  | R.E.<br>Sr <sup>90</sup><br>Zn <sup>65</sup>  | NDA<br>1.5 <u>+</u> 0,44<br>1540                        | 0<br>0,3<br>93                   | ≩<br>-<br>2 - 2 - 3                       |
|                     |                 | Muscle      | 511               | 190          | 5.4                                                 | 16.8                                                  | R. E.<br>Sr <sup>90</sup><br>Zn <sup>65</sup> | 3.5<br>0.22 <u>+</u> 0.35<br>1600                       | 0.7<br>0.04<br>95                | 5. <u></u>                                |
|                     |                 | Viscera     | 87                |              | 6.1                                                 | 15.9                                                  | R. E.<br>Sr <sup>90</sup><br>Zn <sup>65</sup> | 11<br>1.2 <u>+</u> 0.29<br>1480                         | 1.8<br>0.2<br>93                 | Constanted                                |

A NOT NE

# Radiochemical Analysis of Biological Specimens from Rongelap Atoll

.

| Sample<br>No. | Sample                            | Tissue                     | Wet<br>Wt.<br>(g) | Ca<br>(filg) | Beta Activity<br>(d/m/sample<br>x 10 <sup>-4</sup> ) | Gamma Activity<br>(d/m/sample<br>x 10 <sup>-4</sup> ) | Nuclide                                       | Nuclide Activity<br>(d/m/sample<br>x 10 <sup>-4</sup> ) | Per Cent of<br>Total<br>Activity      | Supshine<br>Usats(a)  |
|---------------|-----------------------------------|----------------------------|-------------------|--------------|------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------|-----------------------|
|               |                                   | Gill                       | 28                | 403          | 1.7                                                  | 2.1                                                   | R.E.<br>Zn <sup>65</sup>                      | NDA<br>210                                              | 0<br>100                              |                       |
| 1630          | i di Juper<br>Flid                | Whole                      | <b>169</b>        | 2190         | 1.8                                                  | 77.9                                                  | R. E.<br>Sr <sup>90</sup><br>Zn <sup>65</sup> | 13.3<br>1.7 <u>+</u> 0.92<br>6230                       | 7.4<br>0.1<br>80                      | ि ( <mark>+ 18</mark> |
| 1629          | used Cook                         | Soft Time                  | 46                | 1090         | 1.3                                                  | 2.3                                                   | R. E.<br>Sr <sup>90</sup>                     | 0.8<br>4.72 <u>+</u> 0.59                               | 0.3                                   | 1 <b>+ 25</b>         |
| 1637          | Spider<br>Siiail                  | Soft Time                  | 90                | 713          | 18.7                                                 | 18                                                    | Ru <sup>106</sup><br>R.E.<br>Sr <sup>90</sup> | 360<br>1210<br>5.28 <u>+</u> 0.47                       | 19.2<br>65<br>0.3                     | 9 <b>± 30</b>         |
| 1638          | Spider<br>Sazil                   | Soft Tinue                 | 56                | 175          | 102                                                  | 68                                                    | r.e.<br>Sr <sup>ū0</sup>                      | 11900<br>1.95 <u>+</u> 0.60                             | 116<br>0.02                           | : : ± 331             |
| (a) Sunshi    | ine Unit = 0.00                   | )1 µc Sr <sup>90</sup> /kg | Ca.               |              |                                                      |                                                       |                                               | • •                                                     |                                       |                       |
| (b) R.E. :    | = Rare Earth Gi<br>• No Detectabl | oup.                       |                   |              | •                                                    |                                                       | •                                             |                                                         |                                       |                       |
|               | •                                 |                            |                   |              |                                                      | • 21                                                  |                                               |                                                         |                                       |                       |
|               |                                   | •`                         |                   | -<br>        | en of st                                             | • • • • • •                                           |                                               |                                                         | • • • • • • • • • • • • • • • • • • • |                       |
|               |                                   |                            |                   |              | :                                                    |                                                       |                                               |                                                         | •                                     |                       |

-26

The skeletons of fish concentrated and retained the largest amounts of  $Sr^{33}$ , as would be expected from the similarity of strontium metabolism. The skeleton of a fish from Rongelap had 587 sunshine units, the highest observed in any fish. The highest number of sunshine units in any of the samples analyzed appeared in a clarm from Rongelap (2.43 x 10<sup>3</sup> units).

In general, snails had a high number of sunshine units (276 to 502). A relatively high level of  $Ru^{105}$  (19.2 per cent of beta activity) was also found in a snail from Gejen.

Sand and the second second

貫

1 4 5 3 4 4

and an effect the state of the second second second

Sec. Production

A high level of  $Cs^{137}$  (with a 37-yr half-life) was found in a coconut crab. A similar finding was noted at one year post-detonation. In the analyses from previous island resurveys,  $Cs^{137}$  was the major radionuclide found in land food plants and also in the tissues of land animals. The coconuts, which had high levels of  $Cs^{137}$ , were undoubtedly the source of the  $Cs^{137}$  activity found in the coconut crab.

The presence of  $Co^{50}$  in two samples of clams was noted for the first time in the two-year period since the detonation. The  $Co^{50}$  accounted for the major fraction of the total activity in these samples. The  $Co^{50}$ was detected by gamma spectral analysis, and confirmed by chemical separation and absorption measurements.<sup>7</sup> The ability of clams to concentrate  $Co^{50}$  selectively was verified in laboratory experiments using clams obtained locally.<sup>6</sup>

Comparison of the fish and marine specimens collected immediately after detonation and one year later with those studied in the present report (two years after detonation) indicate a drop in activity. The fish from the Rongelap lagoon had approximately one fourth the activity of those analyzed one year post-detonation. Based on radioactive decay of  $Zn^{65}$ , the change in level is about what would be expected.

The total activity found in the terns, whose diet is primarily fish, was low. The level of activity in the terns collected from the various atolls varied considerably, but was generally less than half per unit weight of the activity in fish from the same locality (Table 4.4). The activity of the terns collected from the northern islands of the Rongelap Atoll was higher than that of terns collected on the southern island. The terns collected on Rongerik, however, had a higher average concentration of activity than those from Rongelap, in spite of the lower levels of radioactive contamination of Rongerik and the fish in its lagoon.

The tibia of the terns, except for that of one tern from Kabelle, contained no detectable activity at this time. Although the activity in the tibia of the Kabelle tern had a high value when measured per kilogram

-27-

A. -

the state with the state of the state of the states of

• Unpublished observations, J.K. Gong, W. Shipman, S.H. Cohn, and H.V. Welss,

| •               |                  | Ma of             | Average<br>Weight<br>(g) | Radioactivity |                                                        |                         |      |  |  |
|-----------------|------------------|-------------------|--------------------------|---------------|--------------------------------------------------------|-------------------------|------|--|--|
| Island          | Sample           | No. of<br>Samples |                          | (d/m/sample x | Beta<br>10 <sup>-4</sup> )(d/m/kg x 10 <sup>-4</sup> ) | Gan<br>(d/m/sample x 10 |      |  |  |
|                 |                  |                   |                          |               |                                                        |                         |      |  |  |
| Rongelap Atoll  | ni               |                   |                          |               |                                                        | *                       |      |  |  |
| Rongelap        | Tem              | • •               |                          |               |                                                        |                         | ·    |  |  |
|                 | Egg shell        |                   | 6                        | NDA           | 0                                                      | 0.62                    | 10.3 |  |  |
|                 | Egg, soft tissue | 1                 | 33                       | 0.26          | 7.9                                                    | 0.11                    | 3.3  |  |  |
| Gejen           | Tem              | <b>1</b>          | 92                       | 0.93          | 10.1                                                   | 0.32                    | 3.5  |  |  |
|                 | Viscera          | · 1               | 101                      | 0.38          | 3.8                                                    | 0.025                   | 0.25 |  |  |
|                 | Muscle           | 1                 | 141                      | NDA           | P. 1 0 4 14 1                                          | 0.019                   | 0.14 |  |  |
|                 | Tibia            | . 1               |                          | NDA           | 0                                                      | NDA                     | 0    |  |  |
|                 | •                |                   |                          |               |                                                        |                         |      |  |  |
| Kabelle         | Tera             | 1 1               | . 145                    | 1.1           | 7.8                                                    | - 1.7                   | 12   |  |  |
|                 | Muscle           | ' 1               | 16.9                     | 0.1           | 5.9                                                    | 0.13                    | 7.7  |  |  |
|                 | Tibia -          | 1 . <b>1</b> .    | 0,9                      | 0.07          | 79                                                     | .027                    | 30   |  |  |
|                 | Egg shell        | 2 · '             | 5.3                      | NDA           | 0                                                      | · 0.13                  | 26   |  |  |
|                 | Egg, soft tissue | 2.                | 22,8                     | 0.15          | <b>6.7</b>                                             | .03                     | 1.3  |  |  |
| Ailingnae Atoll |                  | •                 |                          |               |                                                        |                         |      |  |  |
| Sifo            | Tern             | 7                 | 116                      | · 0.38        | 3.3                                                    | 1.7                     | 14.7 |  |  |
|                 | Muscle           | 7 :               | 11.7                     | 0.057         | 4.9                                                    | 0.43                    | 35.7 |  |  |
|                 | Viscera          | 7                 |                          | 0.08          |                                                        | 0.14                    |      |  |  |
|                 | Tible            | . 1               | 0,31                     | NDA           | 0                                                      | NDA                     | 0    |  |  |
|                 | Egg shell        | 1                 | 6                        | NDA           | 0                                                      | 0.06                    | 10   |  |  |
|                 | Egg, soft tissue | 1                 | 33                       | 0.26          | 7.9                                                    | 0.11                    | 3.3  |  |  |
|                 |                  | /                 |                          |               |                                                        |                         |      |  |  |
| Rongerik Atoll  |                  |                   |                          |               |                                                        | •                       | •    |  |  |
| Eniwetak        | Tern             | - 2               | 92                       | 1.9           | 21.0                                                   | 0,9                     | 9.8  |  |  |
|                 | Muscle           | 2                 | 19.7                     | 0.04          | 2.3                                                    | 0,03                    | 1,9  |  |  |
|                 | Tibia            | 2                 | .23                      | NDA           | 0                                                      | NDA                     | 0    |  |  |
|                 | Vlicera          | 2                 |                          | 0.05          |                                                        | 0.09                    |      |  |  |

`

読み

Ĵ.

<u>Lin</u>

15. .÷

٩.

3 : ; e

. • 1.

Υ.

the absolute activity was extremely low and therefore of doubtful statistical significance. The muscle in the terms contained levels of activity varying from 2.3 x  $10^4$  to 5.9 x $10^4$  d/m/kg, depending on the island on which the birds were collected. The soft tissue of term eggs had 7 x  $10^4$  to 8 x  $10^4$  d/m/kg, while the shells showed no detectable activity.

Radioanalysis of a rooster caught on Rongelap Island indicated a beta activity of 6.05 x  $10^5$  d/m and a gamma activity of 1.19 x  $10^6$  d/m (Table 4.5). The level of beta activity of this rooster was 40 per cent of that of a rooster from the same locality analyzed at one year postdetonation.<sup>1</sup> The ratio of beta-to-gamma activity in the rooster was 1:2 at two years, as compared to 1:1 at one year post-detonation. About 86 per cent of the total activity in the body was concentrated in the skele. ton. The distribution of residual activity within the skeleton is shown in the autoradiograph of the rooster tibia (Fig. 1). The activity is diffusely spread throughout the diaphysis. The concentration of activity in the diaphysis and its absence in the ends of the bone indicates that the primary deposition occurred soon after the detonation while the chickens were young and growing. The radiation dose to the skeleton from the internal emitter is obviously considerably higher than that to any other tissue. The muscle contained 8 per cent of the beta activity, and the liver, 4 per cent. The gastrointestinal tract had 1.3 per cent of the beta activity, and about one fourth of this was found in the respiratory tract. The relatively higher levels of activity in the gastrointestinal tract as compared with the respiratory tract suggest that ingestion was the primary route of current entry of the fallout material into the body.

The average activity for individual tissues of four rats collected on Rongelap are presented in Table 4.5. The rats had a beta activity of  $0.095 \,\mu c/kg$  body weight. This is very close to the activity of the rooster,  $0.12 \,\mu c/kg$  body weight. The distribution of activity in the tissues of the rat differed from that in the rooster in that the skeleton and head together contained 65 per cent of the total beta activity, while the gastrointestinal tract had 24 per cent. The distribution of residual activity in the rat skeleton is illustrated in the autoradiograph of the femures of the four rats, Fig. 2. The activity is diffusely spread throughout the bone.

.

· · · ·

### 

ŝ

and the second second

ALL SA

.

and the second second

· ( en least an early and a new press and a second construction of a second se

> Summary of Gross Beta and Gamma Activity in a start Rongelap Island Animals

| 2                      | No. of<br>Samples | Average<br>Weight<br>(g) | Endioactivity                       |                                 |                                     |                                 |  |  |
|------------------------|-------------------|--------------------------|-------------------------------------|---------------------------------|-------------------------------------|---------------------------------|--|--|
| •                      |                   |                          | Ecta                                |                                 | Gamina                              |                                 |  |  |
| Sample                 |                   |                          | (d/m/sample<br>x 10 <sup>-4</sup> ) | (d/m/kg<br>x 10 <sup>-4</sup> ) | (d/m/tample<br>x 10 <sup>-4</sup> ) | (d/m/kg<br>x 10 <sup>-4</sup> ) |  |  |
| Rooster                | 1                 | 2250                     |                                     | <b>.</b> .                      |                                     | <b>)</b>                        |  |  |
| Skeleton               |                   | 560                      | 52                                  | 93                              | 101                                 | 181                             |  |  |
| Muscle                 |                   | 1050                     | 5.1                                 | 4.9                             | 6.9                                 | 6.6                             |  |  |
| Gastrointestinal Tract |                   | 185                      | 0.8                                 | 4.3                             | 1.6                                 | 8.7                             |  |  |
| Liver                  |                   | 192                      | 2.4                                 | 12.5                            | 9.4                                 | 49.0                            |  |  |
| Respiratory Tract      |                   | 32                       | 0.2                                 | 8.7                             | 0.4                                 | 17,4                            |  |  |
| Total Activity         |                   |                          | 60.5                                |                                 | 119.3                               |                                 |  |  |
|                        |                   |                          |                                     | •                               | •                                   | • • •                           |  |  |
| Rats                   | 4                 | 62.9                     |                                     |                                 |                                     |                                 |  |  |
| Skeleton               |                   | 4.1                      | 0.73                                | 179                             | 0,15                                | 35 <b>.5</b>                    |  |  |
| Head                   |                   | 5.4                      | 0.15                                | 36                              | 0,1                                 | 18                              |  |  |
| Muscle                 |                   | 39                       | 0,03                                | 7.5                             | 0.04                                | 10.2                            |  |  |
| Gastrointestinal Tract |                   | 10                       | 0.32                                | 32.0                            | 0.27                                | 21                              |  |  |
| Liver                  |                   | 3.8                      | 0.08                                | 21.7                            | 0,06                                | 15.8                            |  |  |
| Respiratory Tract      |                   | 0.5                      | 0.03                                | 62.0                            | 0.02                                | 36.0                            |  |  |
| Total Activity         |                   |                          | 1.34                                |                                 | 0.64                                |                                 |  |  |

: · · · · . • .

-30-

1. **4**. 1. 2. 1

TES WIENE PROPERTY OF THE T. A. - maisterine . RILL MONTH

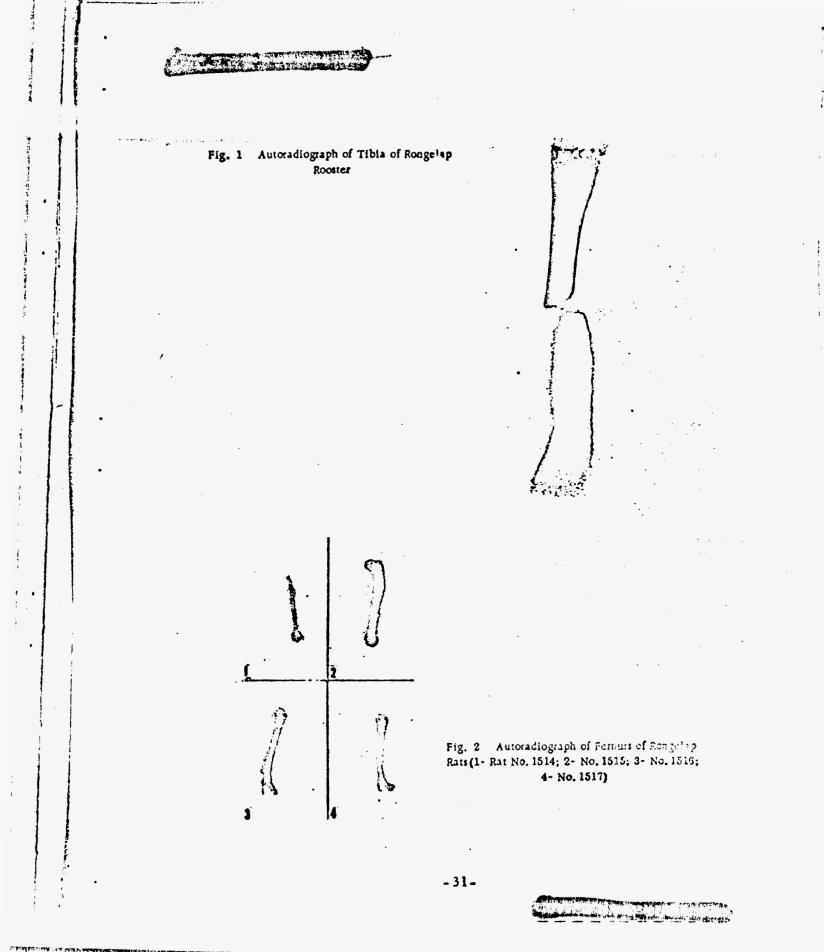
A CALL STREET مهمین به در میکند. ۱۹۹۵ - میکند میکند از میکند از میکند از میکند از میکند. ۱۹۹۵ - میکند میکند از میکند از میکند از میکند از میکند.

- 、

. . . . .

her in

I was a strategic and a set of go at


----

and a second No. Car 

and the second second

an an an an Ara. San tara an Same and a second 1 8 4 3 1 1 1 m

1.



1. 4 B . 1

а. <sub>19</sub>47. н

. . . A

and Marth Charles

\* . Se .

3

ŀ. .

1.5.4

1.14 2.2

 $\Phi_{\rm eff}(t) = - 2 \Phi_{\rm eff}(t) + 2 \Phi_$ 

u and in the second second second second second second substantial and second second second second second secon Arrest second second

CHAPTER 5 CONSTRUCTION CONSTRUCTURA CONSTRUC

#### SUMMARY

The residual radioactive contamination on the Marshall Islands and in the surrounding water was evaluated two years after the nuclear detonation of Operation CASTLE by an examination of plants, soil, water, fish, marine invertebrates, birds and land animals and by gamma survey of the islands.

In plants, readily detectable levels of gross activity were found. The activity of portulaca exceeded that of other plants. In general, leafy structures were more active than their fruit counterpart in the coconut palm, pandanus and arrowroot. The primary contaminating isotope in coconuts, pandanus keys and arrowroot tubers was cesium-137. On the other hand, structural parts accumulated the rare earth radioelements. The relative nuclide composition in these plants was similar to that of a year ago. Coconuts were more radicactive in the current survey than in the previous one. Interpretation of the data indicated that this fruit possessed an unusual capacity to concentrate cesium-137.

The activity in lagoon, ocean, cistern and well water was either of a low order of magnitude or imperceptible. In soil, the activity remained firmly affixed to the surface. Gamma dose measurements indicated that the reduction in the gamma field over the past year was attributable to radioactive decay rather than to leaching or eroding of the nuclides from the soil.

Expression of Sr<sup>50</sup> assays in terms of sunshine units showed that portulaca, coconut husks, pandanus keys and air roots, and certain potable water exceed the maximum permissible concentration.

Significant levels of activity remained in land animals although marine life contained the highest concentrations of internally deposited radionuclides of the animals analyzed. The levels of activity in fish were approximately one fourth of those determined at one year post-detonation. However, the tissue distribution of nutwity and not altered significantly. The rare earth group constituted a small fraction of the total activity in fish and a larger proportion in marine invertebrates. Strontium-90



Sector of Sector



contributed less than one per cent of the total beta activity in all marine specimens except one thank

The most striking fact was that about 90 per cent of the total activity In fish was contributed by the induced activity, Zn<sup>65</sup>. Another induced activity, Co<sup>60</sup>, was found in high concentration in the soft tissues of clams.

## 1. 1. C.

the state of the second st the second second second

Approved by: P.C. TOMPKINS

Scientific Director

-

5.4

Second Second 1. . . . . . 1. . . . . and the second . . . . . et et al de la • 1.1.544 and the second state of th • 

n phases . · · · 1111 

and a start of the second s Second • 2.1 . 



-34-

ан <mark>на постоя продоктива соними постоя у на посто</mark>я услова долго у супусти и сонимательно и постоя нарожници, и на По 1971 години, у која на учествуја со постоя у 1976 година са постоя и учеству со со стор за 1970 година на уче 1979 година – Пусстви Супуст у сило у сило со струкува буго постоя се постоя се постоя со стор за 1970 година на a. Net e system stations in and the first and the second of the second se 1. 1. 1. 1. po. -+ Law to a strate a the states and the state of the second second . . . . . .

#### REFERENCES

The summer of the state of the second state of the state

- Cohn, S.H., Rinehart, R.W., Robertson, J.S., Gong, J.K., Milne, W.L., Chapman, W.H., and Bond, V.P. Internal Radioactive Contamination of Human Beings Accidentally Exposed to Radioactive Fallout Material. U.S. Naval Radiological Defense Laboratory and Naval Medical Research Institute Technical Report USNRDL-TR-86, 9 May 1956.
- Cohn, S. H., et al. Study of the Internal Radioactive Contamination of Human Beings and Animals and Contamination of the Environment Resulting from Fallout in Operation CASTLE. Naval Research Institution and Naval Radiological Defense Laboratory. Operation CASTLE Project 4.1 Addendum Report No. WT-936, 1955 (CONFIDENTIAL).
- Rinehart, R.W., Cohn, S.H., Seiler, J.A., Shipman, W.H., and Gong, J.K. Residual Contamination of Plants, Animals, Soil, and Water of the Marshall Islands One Year Following Operation CASTLE Fallout. U.S. Naval Radiological Defense Laboratory Report USNRDL-454, 12 August 1955 (CONFIDENTIAL).
- Hunter, H.F., and Ballou, N.E. Simultaneous Slow Neutron Fission of U<sup>235</sup> Atoms. I. Individual and Total Rates of Decay of the Fission Products. U.S. Naval Radiological Defense Laboratory Report AD-65(C), 24 February 1949. Also, <u>Nucleonics</u> 9, No. 5, pp. c2 - c7, November 1951.
- Shipman, W.H., Seiler, J.A., and Rinehart, R.W. Sample Collecting Techniques and Radiochemical Procedures Used in the Atoll Resurvey Project Following Operation CASTLE. U.S. Naval Radiological Defense Laboratory Technical Report USNRDL-TR-68, 6 December 1955.
- 6. Martell, E.A. Project Sunshine Chicago Bulletin No. 11, The Enrico Fermi institute for Nuclear Studies, The University of Chicago, 1 December 1955 (SECRET).

-35-

## CONFIDENTIAL

#### Weiss, H.V., and Shinman, W.H. The Biological Concentration of Cohalt-50 by #21120\* Clamp as decision from Fallout. U.S. Naval Radiological Defense Laboratory Fechnical Report USNRDL-TR-90, 21 May 1956 (CONFIDENTIAL).

BESTAMALABLE

81

# CONFIDENTIAL

-36-

# APPENDIX

.

. . .

. . .

•:

:

\* . . . . t :: .

#### GROSS BETA, GROSS GAMMA, AND NUCLIDE ANALYSES OF SPECIMENS RECOVERED FROM THE MARSHALL ISLANDS TWO YEARS AFTER OPERATION CASTLE FALLOUT

-37-

the the second secon

 $\left\{ \left\{ x_{1},y_{1}\right\} \in \left\{ x_{1},y_{2}\right\} \right\} \in \left\{ x_{1},y_{2}\right\} \in \left\{ x_$ 

}

But in the second of the second

į

5

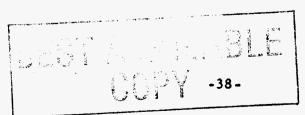
10.1

Sec. Sec. 18 Sec. 1

6 S. J. J. L.

Sec. Sec. 4.

1.9. + 1.1


| TABLE | A.1 |
|-------|-----|
|-------|-----|

| Sourc             | e                                                     | Gejen                        | Eniwetak                    | Enlactok                  | Eongelap                  | Sifo                     | Utirik                   | Likiep                    |
|-------------------|-------------------------------------------------------|------------------------------|-----------------------------|---------------------------|---------------------------|--------------------------|--------------------------|---------------------------|
| Plant             | Part                                                  | P                            | FLANTS(b)                   |                           | (c/m/kg x 10-5)           |                          |                          |                           |
| Portulaca         | Whole Plant                                           | 54.3                         | 6.33                        | 3.97                      | 1,25                      | •                        | 1.26                     | .89                       |
| Anowroot          | Stems, Leaves<br>Tubers                               | 5.31<br>2.67                 | 2.68<br>.88                 | .28<br>.41                | .23                       | .14<br>.49               | .12                      | .02<br>.03                |
| Pandanus          | Air Root<br>Leaves<br>Green Keys<br>Ripe Keys         | 2.82<br>2.58<br>1.78         | .20<br>.72<br>.48           | .99<br>.48<br>.92<br>.83  | .32<br>.26<br>.22<br>.20  | .59<br>.15<br>.12        | .03<br>.19<br>.04<br>.04 | .01<br>.02<br>.02<br>.02  |
| Papaya            | Ripe<br>Green<br>Leaves, Trunk                        | -<br>-<br>-                  | -                           | •                         | .12<br>.43<br>.05         | -<br>-<br>-              | .12<br>.01<br>.17        | .03<br>.08                |
| Ripe Coconut      | Milk<br>Meat<br>Shell<br>Husk                         | 3.17<br>2.29<br>5.30<br>5.66 | .89<br>.33<br>1,25          | 1.36<br>1.03<br>3.16      | .73<br>.34<br>.43<br>1.39 | .59<br>.29<br>.30<br>.89 | .08<br>.04<br>.04<br>.10 | .53<br>.04<br>.02<br>.07  |
| Green Coconut     | Whole<br>Milk<br>Meat<br>Shell<br>Husk<br>Shell, Husk | 4,17                         | -<br>.23<br>.27<br>-<br>.32 | .14<br>.21<br>1.04<br>.79 | .05<br>.12                | .10<br>.13<br>.32<br>.18 | .08<br>.03<br>.06        | .04<br>.006<br>.04<br>.02 |
| Sprouting Coconut | Milk<br>Meat<br>Shell<br>Husk                         | -                            | 1,43<br>.02<br>.28<br>1,22  | .80<br>.43<br>.41<br>2.40 | .80<br>.23<br>.51<br>1.47 | .77<br>.91<br>.19<br>.82 | .11<br>.05<br>.02<br>.11 | .03<br>.04<br>.02<br>.08  |
| Coconut           | Leaves<br>Frond<br>Leaves, Frond                      | -<br>1.57                    | 10.6                        | •75<br>•52                | -<br>-<br>-               | .50<br>.33               | 2.20                     | 1.09                      |
| Banana            | Fruit<br>Bark<br>Leaves                               | -                            | -                           | -                         | •<br>•                    | -<br>-<br>-              | -                        | .10<br>.02<br>.05         |
| Taro              | Leaves, Stalk<br>Tuber, Ructs<br>with Soil            | •                            | •                           | •                         | •                         | •                        | -                        | <b>,05</b><br>.08         |

## Gross Gamma Activity in Flant. Mate - a prosite anti-

(a) All counts were contexted for the complete stilleles of and "

(b) Gross gamma activity of plant samples was determined in April 1956 and that of soil and water in May 1956.



Na.

the second

· · · •

•.

.....

4. <sup>1</sup>. a

The second s

. . .

1

Brauffer

- 4 - 4 - 3

La Salata

御をういい

Aller Calender

第二丁

ŝ

ŝ

,

いたいたいである

## TABLE A.1 (continued)

.

121

NDA

2011/2012

| Gross Companies |          | nn a star star star star star star star st |                         | a a an |      | (7)                  |        |
|-----------------|----------|--------------------------------------------|-------------------------|-----------------------------------------|------|----------------------|--------|
| Source          | Gejen    | Eniwetak                                   | Enlactok                | Rongelap                                | Sifo | Utirik               | Likiep |
|                 | WATER(b) | (c/m/lite                                  | er x 10 <sup>-5</sup> ) |                                         |      |                      |        |
| Cistern         | -        | -                                          | -                       | .005                                    | •    | .08                  | •      |
| Weil            | •        | •                                          | .05                     | -                                       | -    | .098,<br>.03,<br>.06 | .05    |
| Осеая           | .02      | NDA                                        | NDA                     | .24                                     | .22  | NDA                  | .09    |
| Lagoon          | .03      | NDA                                        | NDA                     | _008                                    | .13  | .23                  | .10    |
| Depth (in.)     | SOIL(D)  | (c/m/kg x                                  | 10-5)                   |                                         |      |                      |        |
| 0-1             | 719      | .41                                        | 4.23                    | 3.46                                    | 2.02 | .13                  | NDA    |
| 12              | -        | -                                          | •                       | .41                                     | •    | -                    | -      |
| 18              | NDA      | •                                          | .28                     | ÷,                                      |      | -                    | .19    |
| 24              | •        | .40                                        | -                       | •                                       | .23  | NDA                  | -      |
| 33              | NDA      | •                                          | •                       | .38                                     | -    | -                    | -      |
| 36              | -        | •                                          | -                       | •                                       | • `  | -                    | .23    |
| 44-45           | -        | •                                          | .65                     | -                                       | -    | -                    | -      |
| 48              | -        | .19                                        | -                       | •                                       | .30  | -                    | -      |

(a) All counts were corrected for the counting efficiency of  $Co^{50}$ ,

(b) Gross gamma activity of plant samples was determined in April 1958 and that of soil and water in May 1956.

(c) NDA indicates no detectable activity.

141

1.14

. . .

55-58

BESTAVALABLE COPY -39-

See St.

and a second

110

TARTE A 2

|          |                   |                         | integrations (d/          | m/ ky, or d/m/1              | lter)                  |
|----------|-------------------|-------------------------|---------------------------|------------------------------|------------------------|
| Island   | Sample            | Total Rare<br>Eurins(b) | Sr <sup>90</sup>          | <b>Ci</b> <sup>137 (b)</sup> | Ru106 (5)              |
| Gejea    | Soil (0-1 in.)    | 1.75 x 10 <sup>8</sup>  | 5.3 x 10 <sup>6</sup>     | 3.49 x 10 <sup>5</sup>       | 3.23 x 10 <sup>7</sup> |
| •        | Portulaca         | 4.1 x 10 <sup>6</sup>   | $2.3 \times 10^5$         | 1.00 x 10 <sup>5</sup>       |                        |
|          | Coconut, Whole    | 5.9 x 10 <sup>2</sup>   | $9.2 \times 10^2$         | 1.3 x 10 <sup>5</sup>        |                        |
|          | Coconut Milk      | $6.1 \times 10^2$       | $6.0 \times 10^2$         | 2.7 x 10 <sup>5</sup>        |                        |
|          | Coconut Shell     | 1.6 x 10 <sup>3</sup>   | NDA <sup>(c)</sup>        | 6.4 x 10 <sup>5</sup>        |                        |
|          | Coccaut Meat      | 2.2 x 10 <sup>2</sup>   | $1.5 \times 10^2$         | 2.1 x 10 <sup>5</sup>        |                        |
|          | Coconut Husk      | 1.3 x 10 <sup>3</sup>   | $1.2 \times 10^3$         | $5.1 \times 10^{5}$          | -                      |
|          | Anoviroot Leaves  | 8 <b>,3 x 10</b> 5      | $1.9 \times 10^4$         | $7.4 \times 10^4$            | 8.66 x 10 <sup>3</sup> |
|          | Arrowroot Tubers  | 3.2 x 10 <sup>4</sup>   | $1.9 \times 10^3$         | $1.4 \times 10^{5}$          | $1.3 \times 10^4$      |
|          | Pandanus Leaves   | 4.4 x 10 <sup>4</sup>   | 3.5 x 10 <sup>3</sup>     | $1.9 \times 10^{5}$          | 9.9 x 10 <sup>3</sup>  |
|          | Pandanus Air Root | 4.3 x 10 <sup>4</sup>   | NDA                       | 2.6 x 10 <sup>5</sup>        |                        |
| Eniactok | Soil (0-1 in.)    | 3.7 x 10 <sup>5</sup>   | $2.1 \times 10^4$         | 6.1 x 10 <sup>3</sup>        |                        |
|          | Portulaca         | 1.5 x 10 <sup>5</sup>   | $4.5 \times 10^4$         | 1.9 x 10 <sup>5</sup>        |                        |
|          | Coconut Husk      | 8.8 x 10 <sup>3</sup>   | $6.7 \times 10^3$         | 5.3 x 10 <b>5</b>            |                        |
|          | Coconut Shell     | 3.6 x 10 <sup>2</sup>   | $2.8 \times 10^2$         | 1.0 x 10 <b>5</b>            |                        |
|          | Coconut Meat      | NDA                     | $1.1 \times 10^2$         | 8,3 x 10 <sup>4</sup>        |                        |
|          | Coconut Shell     | NDA                     | NDA                       | $3.2 \times 10^4$            |                        |
|          | Arrowroot Tubers  | 6.3 x 10 <sup>3</sup>   | $8.2 \times 10^2$         | 5.1 x 194                    |                        |
|          | Pandanus Keys     | $1.7 \ge 10^3$          | 5.8 x 10 <sup>3</sup>     | 6.3 x 10 <sup>4</sup>        |                        |
|          | Pandanus Keys     | 1.5 x 19 <sup>3</sup>   | $2.0 	imes \mathbf{10^3}$ | 0. 5 x 194                   |                        |
|          | Pandanas Leaves   | 5.6 x 104               | $4.6 \times 10^{4}$       | 2,3 x 10 <sup>5</sup>        | 5.72 x 10 <sup>4</sup> |
|          | Pandanus Air Foot | 5.6 x 10 <sup>3</sup>   | $4.3 \times 10^2$         | 9.9 x 10 <sup>4</sup>        |                        |
|          | Water, Well       | 1.3 x 16 <sup>2</sup>   | NDA                       |                              |                        |
| Rongelap | Soil (0-1 in.)    | 7.2 x 10 <sup>5</sup>   | $3.3 \times 10^4$         | 1.7 x 104                    |                        |
|          | Рарауа            | $7.1 \ge 10^3$          | $9.9 \times 10^2$         | 3.2 x 10 <sup>5</sup>        |                        |
|          | Coconut Husk      | 3.1 x 10 <sup>3</sup>   | $1.7 \times 10^{3}$       | 2.1 x 10 <sup>5</sup>        |                        |
|          | Coconut Meat      | NDA                     | $2.5 \times 10^2$         | 1,9 x 10 <sup>4</sup>        |                        |
|          | Water, Cistern    | 7.6 $\times 10^2$       | $1.2 \times 10^{3}$       |                              |                        |
|          | Water, Ocean      | 1.3 - 103               | 1D1                       |                              |                        |
|          | Water, Lagooa     | 1.5 x 10 <sup>3</sup>   | 290                       |                              |                        |
| Eniwetak | Soil (0-1 in.)    | 2.5 x 10 <sup>6</sup>   | 4.5 x .04                 | 2.0 x 10 <sup>3</sup>        | 2.1 x 10 <sup>5</sup>  |
|          | Coconut Leaves    | 6.7 x 10 <sup>5</sup>   | 5.6 x 10 <sup>3</sup>     | 7,9 x 10 <sup>4</sup>        | 6.07 x 104             |
|          | Water, Lagoon     | $6.7 \times 10^2$       | ADA                       |                              |                        |
|          | Water, Ocean      | $4.5 \times 10^2$       | NDA                       |                              |                        |

Nuclide Analyses of Plant, Soil and Water Samplesial

BEST AND THERE

Same de

No. A. Barth

5 E. S. + 1

12

- 1 Sec. 1

· the Street Sec.

×. \*

1

1

ł

-40-

A he leen

ATT A TO BE A

n nggan The set

1 2 -

「「「「「「「「」」」

「「「「「「「「」」」」

άļΫ

#### TABLE A.3 (Continued)

. . .

| ••     | •                | Disintegrations (1/m/kg or d/m/liter) |                       |                       |                       |  |  |
|--------|------------------|---------------------------------------|-----------------------|-----------------------|-----------------------|--|--|
| Island | Sample           | Total Pare<br>Earths(b)               | Sr <sup>90</sup>      | Сз <sup>137</sup> (b) | Ru <sup>106</sup> (b) |  |  |
| Sifo   | Soil (0-1 in.)   | 2.1 x 10 <sup>5</sup>                 | 1.3 x 10 <sup>4</sup> | 3.6 x 10 <sup>3</sup> | 7.2 x 10 <b>3</b>     |  |  |
|        | Arrowroot Tubers | $1.3 \times 10^3$                     | $2.6 \times 10^2$     | 2.8 x 10 <sup>4</sup> |                       |  |  |
| Utirik | Soil (0-1 in.)   | 4.1 x 10 <sup>5</sup>                 | 4.8 x 10 <sup>4</sup> | 3.3 x 10 <sup>3</sup> | 6.7 x 10 <sup>4</sup> |  |  |
|        | Coconut Leaves   | $3.2 \times 10^5$                     | NDA                   | $2.4 \times 10^4$     | 9.9 x 10 <sup>3</sup> |  |  |
|        | Water, Well      | $2.5 \times 10^2$                     | 39                    |                       |                       |  |  |
|        | Water, Well      | 70                                    | NDA                   | •.                    |                       |  |  |
|        | Water, Cistern   | $1.8 \times 10^2$                     | 20                    |                       |                       |  |  |
|        | Water, Ocean     | $5.9 \times 10^2$                     | NDA                   |                       | . *                   |  |  |
|        | Water, Lagoon    | $1.5 \times 10^2$                     | 204                   |                       |                       |  |  |

Nuclide Analyses of Flant, Soil and Water Samples(a) +

(a) Rare earth, Cs<sup>137</sup>, and Ru<sup>106</sup> analyses of plants were performed in May 1956 and those of water and soil in June 1956. Samples were analyzed for Sr<sup>90</sup> in July 1958.

(b) Eeta counting efficiency for Ru<sup>196</sup>, Cs<sup>137</sup>, and total rare earths was compared with U<sub>3</sub>O<sub>8</sub> standard. Absorption corrections were computed from AI curves for Ru<sup>106</sup> and Cs<sup>137</sup>; corrections for total rare earths, from AI absorption of Ce<sup>144</sup>.

(c) NDA indicates no detectable activity.

-41-

## the property of the second state of the

140

.

ź

4

2 \*\* \*\*

#### т. <u>А. т. т. т.</u> А. т.

|               | · •            |                | Wet       | Gross Beta                          |         | Gross G                             | mma                             |
|---------------|----------------|----------------|-----------|-------------------------------------|---------|-------------------------------------|---------------------------------|
| Sample<br>No. | Sample         | Tissue         | ₩t<br>(g) | (d/m/sample<br>x 10 <sup>-4</sup> ) |         | (d/m/sample<br>x 10 <sup>-4</sup> ) | (d/m/kg<br>x 10 <sup>-4</sup> ) |
| RONGEL        | AP ATOLL       |                |           |                                     | <u></u> |                                     | •                               |
| Ron           | gelap Island   | •              | · · · ·   | 1                                   | •       | a star shi ku                       | -                               |
|               | Fish           |                | •         |                                     |         |                                     |                                 |
| 1502A         | Mullet         | Whole          | 182       | 1.6                                 | 8.9     | 4.7                                 | 26                              |
| 1505          | Grouper        | Whole          | 10        | 0.2                                 | 20      | 0,07                                | 7.0                             |
| 1512          | Surgeon        | Whole          | 40        | 0.3                                 | 7.5     | 1.7                                 | 43                              |
| 1502C         | Goat           | Whole          | 218       | 8.8                                 | 40      | 15 <b>.5</b>                        | 71                              |
| 10020         | Uut            | Muscle         | 87        | 1,1                                 | 12      | 2.1                                 | 24                              |
|               |                | Bone           | 29        | 1.5                                 | 52      | 2.7                                 | 95                              |
|               |                | Viscera        | 10        | 4.9                                 | 490     | 2.8                                 | 280                             |
|               |                | Gills          | 12        | 0.6                                 | 52      | 2.2                                 | 190                             |
|               |                | Head           | 26        | 0.45                                | 17      | 3,3                                 | 130                             |
|               |                | Skin           | 28        | 0.2                                 | 5,1     | 2,4                                 | 200                             |
| 1507C         | Grouper        | Whole          | 452       | 5.2                                 | 12      | 5.7                                 | 13.0                            |
|               |                | Muscle         | 172       | 0.4                                 | 2.3     | 0.5                                 | 2.9                             |
|               |                | Bone           | 73        | 1.4                                 | 19      | 2.6                                 | 36                              |
|               |                | Viscera        | 50        | 1.9                                 | 21      | 1,4                                 | 15                              |
|               |                | Gills          | 9         | 0.3                                 | 33      | 0.25                                | 28                              |
|               |                | He2d           | 36        | 0.8                                 | 22      | 0,7                                 | 20                              |
|               |                | Skin           | 39        | 0.4                                 | 11      | 0,28                                | 6,6                             |
|               | Clams          |                |           |                                     |         |                                     |                                 |
| 150 <b>9</b>  | Killer         | Soft<br>tissue | 1803      | 20                                  | 11      | 33                                  | 18                              |
| 1513          | Killer         | Soft           | 882       | 31                                  | 35      | 83                                  | 94                              |
| 1010          |                | tissue         | •         |                                     |         |                                     |                                 |
|               | Snaih          |                |           |                                     |         |                                     |                                 |
| 1522          | Snail          | Soft           | 67        | 0.08                                | 1,3     | 0.07                                | 1,1                             |
| 1922          | 311 <b>411</b> | time.          |           | ÷                                   | -       |                                     |                                 |
| 1530          | Snail          | Soft           | 215       | 6.9                                 | 60      | 12                                  | 100                             |
| 1000          |                | tissue         |           |                                     |         |                                     |                                 |

## Gross Beta and Gamma Activity of Animal Specimens

(Continued)

A Contractory

#### -42-

# K. C. MARTIN PARTY

. . . .

.

· .

- Charles and the second se

#### TABLE A.3 Cont'd

## Gross Beta and Gamma Activity of Animal Specimens

| famela             |              |                                  | Wet       | Gross                               | Beta                            | Gross Gamma                         |                                 |  |
|--------------------|--------------|----------------------------------|-----------|-------------------------------------|---------------------------------|-------------------------------------|---------------------------------|--|
| Sample<br>No       | Sample       | Tissue                           | Wt<br>(g) | (d/m/sample<br>x 10 <sup>-4</sup> ) | (d/m/kg<br>x 10 <sup>-4</sup> ) | (d/m/sample<br>x 10 <sup>-4</sup> ) | (d/m/kg<br>x 10 <sup>-4</sup> ) |  |
| RONGEL             | AP ATOLL     | · · · · ·                        |           |                                     |                                 |                                     |                                 |  |
| Ron                | gelap Island |                                  |           |                                     |                                 |                                     |                                 |  |
|                    | Crabs        |                                  |           |                                     |                                 |                                     |                                 |  |
| 1502B              | Coconut      | Saft<br>tissue                   | 114       | 3,5                                 | 31                              | 3.1                                 | 27                              |  |
| 1520 <b>A</b>      | Langousta    | Soft<br>tissu <b>e</b>           | 79        | 1.3                                 | 16                              | 2,1                                 | 2.7                             |  |
| 1520C              | Red eye      | Whole                            | 57        | 0.75                                | 13                              | 3.8                                 | 67                              |  |
| 1520C <sup>1</sup> | Reef         | Whole                            | 61        | 0.25                                | 4.1                             | 0,99                                | 16                              |  |
| 1520D              | Red Spotted  | Whole                            | 73        | 0.75                                | 10                              | 0,43                                | 5.6                             |  |
| 1529               | Grapsus (2)  | Whole                            | 94        | 0.88                                | 9.3                             | 3.8                                 | 41                              |  |
| 1533               | Hermit       | Whole                            | 88        | 8.9                                 | 100                             | 1,3                                 | 15                              |  |
|                    | Eel          |                                  |           |                                     |                                 |                                     |                                 |  |
| 15028              | Moray        | Whole                            | 136       | 1.3                                 | 9,2                             | 8,4                                 | 6 <b>2</b>                      |  |
|                    | Birds        | ·                                |           |                                     |                                 |                                     |                                 |  |
| 1020               | Noddy tern   | Egg shell<br>Egg, soft<br>tissue | 6.0<br>33 | NDA (a)<br>0,26                     | NDA<br>8                        | 0.62<br>0.11                        | 103<br>3 <b>.2</b>              |  |
| 1510               | Rooster      | Whole                            | 2250      | •                                   | ·                               |                                     |                                 |  |
|                    |              | G.I. tract                       | 185       | 0.80                                | 4,3                             | 1.6                                 | 8.7                             |  |
|                    |              | Muscle                           | 1050      | 51                                  | 4,9                             | 6.9                                 | 6.6                             |  |
|                    |              | Liver                            | 192       | 2.4                                 | 12.5                            | 9,4                                 | 49.0                            |  |
|                    | •            | Respirator <u>y</u><br>system    | 23        | 0.20                                | 8.7                             | 0_4                                 | 17,4                            |  |
|                    |              | Skeleton                         | 560       | 52                                  | 93                              | 101                                 | 131                             |  |

(a) NDA = No detectable activity

1.90

1. 1. 14

مانا روادون ارتقامها

1.11

1.14

6.

1

1

(Continued)

-43-

11.83 07 أهتف بالمانه

f Belondel i Stelener Referenci i oran kaj statut

a de la deserva a la contra d

and the second se

and the second second

-

ALLE TOTAL

N.

and all a line

Start Start Contract

al transformer

. . . . . . .

¢

## TABLE A.C. C.A.S.

| Sample |              |                      | Wei<br>Wi<br>(g) | Gross Beta                          |                                 | Gross Gamma                         |                                 |  |
|--------|--------------|----------------------|------------------|-------------------------------------|---------------------------------|-------------------------------------|---------------------------------|--|
| No.    | Sample       | Tissue               |                  | (d/m/tample<br>x 10 <sup>-4</sup> ) | (d/m/kg<br>x 10 <sup>-4</sup> ) | (d/m/sample<br>x 10 <sup>-4</sup> ) | (d/m/kg<br>x 10 <sup>-4</sup> ) |  |
| RONGEI | AP ATOLL     |                      |                  |                                     |                                 |                                     | · · ·                           |  |
| Ron    | gelap Island |                      |                  |                                     | -                               |                                     |                                 |  |
|        | Mammals      |                      |                  |                                     |                                 |                                     |                                 |  |
| 1514   | Rat          | Whole                | 48.5             |                                     |                                 |                                     |                                 |  |
|        |              | G.I. tract           | 7.65             | 0,38                                | 43.8                            | 0,25                                | 32.7                            |  |
|        |              | Skeleton             | 3.1              | 0.58                                | 187.0                           | 0,15                                | 48.3                            |  |
|        |              | Skin,<br>muscle      | 30 <b>.0</b>     | 0,39                                | 13,0                            | .045                                | 15.0                            |  |
|        |              | Head                 | 4.2              | 0.14                                | 33 <b>.3</b>                    | .086                                | 20.5                            |  |
|        |              | Liver                | 2.86             | .063                                | 22.1                            | .052                                | 18.2                            |  |
|        |              | Respiratory<br>tract | .39              | .029                                | 74.3                            | .015                                | 38.5                            |  |
| 1515   | Rat          | Whole                | 6 <b>5</b>       |                                     |                                 |                                     |                                 |  |
|        |              | G.I. tract           | 10.5             | .34                                 | 32.3                            | .26                                 | 24.7                            |  |
|        |              | Skeleton             | 4,2              | 0,74                                | 178.0                           | 0,51                                | 121.0                           |  |
|        |              | Skin,<br>muscie      | 40.2             | 0,31                                | 01,5                            | .073                                | 1.8                             |  |
|        |              | Head                 | 5 <b>.6</b>      | .19                                 | 84.0                            | .085                                | 15.2                            |  |
|        |              | Liver                | 3.7              | .071                                | 19.2                            | .061                                | 16.5                            |  |
|        |              | Respiratory<br>tract | 0,52             | .041                                | 79 <b>.0</b>                    | .023                                | 42,3                            |  |
| 1516   | Rat          | Whole                | 91               |                                     |                                 |                                     |                                 |  |
|        |              | G.I. tract           | 14.4             | 0,20                                | 14.3                            | .025                                | 1.7                             |  |
|        |              | Skeleton             | 5 <b>.8</b>      | .74                                 | 127.4                           | .43                                 | 74.0                            |  |
| •      |              | Head                 | 7.8              | .15                                 | 19.3                            | .08                                 | 10.2                            |  |
|        |              | Skin, musela         | 57.0             | .36                                 | 6.4                             | .13                                 | 2.3                             |  |
|        |              | Liver                | 5.2              | .09                                 | 17.3                            | .061                                | 11.9                            |  |
|        |              | Respiratory<br>tract | 0,73             | .62                                 | 27 <b>,4</b>                    | .022                                | 30,1                            |  |
| 517    | Rat          | Whole                | 47               |                                     |                                 |                                     |                                 |  |
|        |              | G.I. trace           | 7.4              | <b>,</b> 33                         | 48.8                            | .34                                 | 43.0                            |  |
|        |              | Skeleton             | 2.7              | .97                                 | 360.0                           | .30                                 | 111.0                           |  |
|        |              | Skin, muscle<br>Head | 29.4             | .83                                 | 282.0                           | 0.14                                | 48.8                            |  |
|        |              | Liver                | 4.1<br>2.7       | 0 <b>,13</b><br>,088                | 31 <b>.8</b><br>32 <b>.6</b>    | 0,14<br>_049                        | 34.1<br>18.1                    |  |
|        |              | Respiratory          | 0.38             | .036                                | 9 <b>5</b>                      | .011                                | 29                              |  |
|        |              | tract                |                  | 6 - V W                             | -                               |                                     |                                 |  |

#### Gross Beta and Gamma Activity of Animal Specimens

## (Continued)

م د چې ک

. 2

•••

#### -44-

e na statu n Na statu na s

 $(x,y) = \left( \frac{1}{2} \sum_{i=1}^{n} \left( \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_$ 

د دیکھی جمعی کا جات کے معام کا کہ جات an water and the second sec

 $(2+1) \in \{1,2\}$ 

•

an the manual finance of a property and an interpret of a construction of the state of the state

----

1.00

2

17. 12 19 19 19 1 3854

4.

#### TABLE A.3 Cont'd

| C             |           |             | Wet   | Gross B              |                      | Gross Gamma          |                      |  |
|---------------|-----------|-------------|-------|----------------------|----------------------|----------------------|----------------------|--|
| Sample<br>No. | Sample    | Tissue      | - WL  | (d/m/sample          | (d/m/kg              | (d/m/sample          |                      |  |
|               |           |             | (g) . | x 10 <sup>-4</sup> ) |  |
| RONGEL        | AP ATOLL  |             |       | •                    | •                    | :                    | ,                    |  |
| Enlaet        | ok Island |             |       |                      |                      |                      | , ·                  |  |
|               | Fish      |             |       |                      |                      |                      |                      |  |
| 1523          | Angel     | Whole       | 48    | 0.98                 | 20,5                 | 2.76                 | 57.4                 |  |
| 60            | Mullet    | Whole       | 80    | 2,38                 | 29.7                 | 1,05                 | 13,2                 |  |
| 1525C         | Parrot    | Whole       | 55    | 1.38                 | 25,1                 | 2.0                  | 36.7                 |  |
| 1525A         | Parrot    | Whole       | 1140  | 18.8                 | 16.5                 | 36.9                 | 32.4                 |  |
|               |           | Head        | 135   | 0.45                 | 3.33                 | 7.0                  | 52                   |  |
|               |           | Gill        | 56    | 0,55                 | 9.9                  | 4.1                  | 73.2                 |  |
|               |           | Viscera     | 164   | 15.9                 | 97.2                 | 11.5                 | 70                   |  |
|               | •         | Bone        | 210   | 0.76                 | 3,6                  | 7.1                  | 33.8                 |  |
|               |           | Muscle      | 338   | 0.67                 | 1.99                 | 4,1                  | 12.1                 |  |
|               |           | Skin        | 131   | 0.46                 | 3.47                 | 3.07                 | 23,4                 |  |
| 15255         | Goat      | Whole       | 87    | 0.39                 | 4.5                  | 7.5                  | <b>66</b>            |  |
|               | Clam      |             |       |                      | •                    |                      |                      |  |
| 1527          | Killer    | Soft tissue | 736   | 3.3                  | 4.5                  | 6.5                  | <b>3.8</b>           |  |
|               | Crab      |             |       |                      |                      |                      |                      |  |
| 1524          | Grapsus   | Soft tissue | 82    | .37                  | 4.5                  | 1,2                  | 14.1                 |  |
|               | Bird      |             |       |                      |                      |                      |                      |  |
| 1004          | Plover    | Whole       | 281   | 1.25                 | 4.4                  | 5.3                  | 18.3                 |  |
| Gej           | en Island |             |       |                      |                      |                      |                      |  |
|               | Fish      |             |       |                      |                      | •                    |                      |  |
| 1620          | Snapper   | Whole       |       | 1.7                  |                      | 5.3                  |                      |  |
| 1630          | Grouper   | Whole       | 169   | 1.8                  | 10.4                 | 9.6                  | 57                   |  |
| 1623          | Squirrel  | Whole       | 216   | 1.3                  | 5,8                  | 7.1                  | 32 <b>.8</b>         |  |
| 1623A         | Squirrel  | Whole       | 189   | 3.6                  | 19.2                 | 12.3                 | 64.9                 |  |
| 1623B         | Squittel  | Whole       | 113   | 2.5                  | 21.2                 | 10.3                 | 87.7                 |  |
| 10230         | Butterfly | Wissle      | 115   | 7,1                  | 62                   | 21.2                 | 185                  |  |

Gross Beta and Gamma metry of minual Specimens

mater with'

1.4

-45-

2

| A the first har it is the state of the state |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|



ļ

1

į

An Ali Pala Chan

alander station was a filler

a Statistica - Art

Souther States & Shine

ł

3

Turner of the second

.

10.01

4 · · · +

n na standar a station a station and the station of the

----

. . . .

## TABLE A.3 Cont'd

-

I.

н <u>н</u> н ман на селото

| Sample<br>No. |              |             | Wet<br>Wt<br>(g) | Gross Beta                          |                                | Gross Gamma                            |                                |
|---------------|--------------|-------------|------------------|-------------------------------------|--------------------------------|----------------------------------------|--------------------------------|
| No.           | Sample       | Tissue      |                  | (d/m/sample<br>x 10 <sup>-4</sup> ) | (J/m/kg<br>x 10 <sup>4</sup> ) | (d/m/sample<br>x 10 <sup>-4</sup> )    | (d/m/k<br>x 10 <sup>-4</sup> ) |
| RONGEL        | AP ATOLL     |             |                  | · ·                                 |                                | ······································ |                                |
| Geie          | n Island     |             |                  |                                     |                                | '                                      | • .                            |
|               |              |             |                  |                                     |                                | · · ·                                  |                                |
|               | Fish (cont'd | )           | • · · · · ·      |                                     | •.                             |                                        | , ·                            |
| 1625          | Surgeon      | Whole       | 136              | 3,9                                 | 28.5                           | 7.2                                    | 53                             |
| 1621          | Snapper      | Whole       | 1154             | 26.3                                | 23.0                           | 87                                     | 75                             |
|               |              | Head        | 219              | 6.6                                 | 30.1                           | 24.7                                   | 113                            |
|               |              | Gill        | 28               | 1.7                                 | 58,9                           | 2,1                                    | 74,2                           |
|               |              | Viscera     | 87               | 6.1                                 | 70.1                           | 15.9                                   | 184                            |
|               |              | Muscle      | 511              | 5.4                                 | 10.5                           | 16.8                                   | 32.9                           |
|               |              | Bone        | 173              | 5.5                                 | 31.8                           | 15.7                                   | 907                            |
|               |              | Skin        | <b>73</b> 🦽      | 1                                   | 13.7                           | 11.8                                   | 161                            |
|               | Crabs        |             |                  |                                     | Те.,                           |                                        | •`.                            |
| 1629          | Sand         | Whole       | 46               | 1.3                                 | 28.3                           | 2,3                                    | 39,1                           |
| 1632          | Red eye      | Whole       | 32               | 0.88                                | 27.3                           | 4,3                                    | 134                            |
|               | Snail        |             |                  | -                                   |                                |                                        |                                |
| 1636          | Spidet       | Soft tissue | 91,5             | <b>11.3</b> ,                       | 124                            | 6.5                                    | 71.4                           |
| 1637          | Spider       | Soft tissue | 90               | 18.7                                | 207                            | 18                                     | 201                            |
| 1638          | Spider       | Soft tissue | 56               | 102                                 | 1820                           | 68                                     | 1210                           |
| 1639          | Scorpion     | Soft tissue | 39,5             | 17.7                                | 440                            | 23                                     | 580                            |
|               | Birds        |             |                  |                                     |                                |                                        | - 1                            |
| 1035          | Fairy tern   | Whole       | 92               | 0,93                                | 10.1                           | 0.32                                   | 3.5                            |
| 1035          | Fairy tern   | Viscera     | 101              | .38                                 | 0.38                           | .025                                   | 0.25                           |
|               |              | Muscle      | 141              | NDA                                 |                                | .019                                   | 0,15                           |
|               |              | Tibla       |                  | NDA                                 |                                | NDA                                    |                                |
| Kab           | elle Island  |             |                  |                                     |                                |                                        |                                |
|               | Fish         |             | •                |                                     |                                |                                        |                                |
| 1540          | Grouper      | Whole       | 176              | 0.75                                | 13,4                           | 6                                      | 107                            |
|               |              |             |                  |                                     |                                | (Cor                                   | tinued                         |
|               |              |             |                  | 6-                                  |                                |                                        |                                |
|               |              |             | -4               |                                     |                                |                                        |                                |

2123

Ś

 $\frac{1}{2}$ 

-

an an the second and the second s Second second

the second second second

Gross Beta and Gamma Activity of Animal Specimens

4) 89-20-

ANAL AL ALL A

「日本」のよう

and the second field of the second se

1

Statistics and a second second

御上御台御寺 ひょう

.11

4

.

• 1

, ž

. . . . . .

 $\frac{\partial \hat{\mu}}{\partial x} = \frac{\partial \hat{\mu}}{\partial x} + \frac{\partial$ 

------

and the second second

ł.

İ.

ų

#### TABLE A.3 Cont'd

| Sample |               |                             | Wet          | Gross B                              | Gross Gamme                     |                                     |                                 |
|--------|---------------|-----------------------------|--------------|--------------------------------------|---------------------------------|-------------------------------------|---------------------------------|
| No.    | Sample        | Tissue                      | Wt<br>(g)    | (d/in/sample<br>x 10 <sup>-4</sup> ) | (d/m/kg<br>x 10 <sup>.4</sup> ) | (d/m/sample<br>x 10 <sup>-4</sup> ) | {d/m/k{<br>× 10 <sup>-4</sup> ) |
| RONGEL | AP A TOLL     |                             |              |                                      |                                 |                                     |                                 |
| Kab    | elle Island   |                             |              |                                      |                                 | •                                   |                                 |
|        | Fish (cont'd) |                             |              |                                      |                                 |                                     |                                 |
| 1538   | Red snapper   | Whole                       | 735          | 12.3                                 | 17.0                            | 18.5                                | 25.0                            |
|        |               | Skin                        | 89           | 1.0                                  | 11.2                            | 4,1                                 | 45.7                            |
|        |               | Muscle                      | 281          | 0,95                                 | 3,4                             | 0,69                                | 2.4                             |
|        |               | Bone                        | 1 <b>41</b>  | 2.4                                  | 16.8                            | 4.4                                 | 31,3                            |
|        |               | Gill                        | 24           | °.45                                 | 18.7                            | 1,1                                 | 44                              |
|        |               | Head                        | 60           | 4.5                                  | 75                              | 1,9                                 | 32                              |
|        |               | Viscera                     | 140          | 2,9                                  | 29                              | 6.3                                 | 64                              |
| 1544   | Parrot        | Whole                       | 1957         | 24.8                                 | 12.7                            | 71.3                                | 36.5                            |
|        |               | Viscera                     | 258          | 5                                    | 19.4                            | 8.8                                 | 34.3                            |
|        |               | Muscle                      | 691          | 2.4                                  | 3,5                             | 6,8                                 | 9.5                             |
|        |               | Head                        | 280          | . 8.5                                | 30,4                            | 20,9                                | 74.8                            |
|        |               | Skin                        | 22 <b>3</b>  | 1,1                                  | 5.0                             | 8.9                                 | 39.9                            |
|        |               | Gilb                        | <b>_</b> 56  | 0.83                                 | 14.7                            | 2,7                                 | 49                              |
|        |               | Bone                        | 449          | 1                                    | 25 <b>.6</b>                    | 23.4                                | 8 <b>6</b>                      |
| 1541   | Butterfly     | Whole                       | 33           | 0.035                                | 9,7                             | 1.9                                 | 53.6                            |
| 1543   | Damsel (6)    | While                       | 69           | 1.5                                  | 21.7                            | 3.8                                 | 54.9                            |
|        | Snail         |                             |              |                                      |                                 |                                     |                                 |
| 737    | Helmet        | Soft titsue                 | 271          | 4,8                                  | 17.7                            | 11,9                                | 43.9                            |
|        | Birds         |                             |              |                                      |                                 |                                     |                                 |
| 1010   | Fairy tern    | Muscl <del>e</del><br>Tibia | 7.6<br>0,3   | 0.033<br>NDA                         | 4.3                             | .012<br>NDA                         | 1.6                             |
| 1011   | Fairy tern    | Muscle                      | 11,2         | 0,029                                | 2,5                             | .045                                | 4.0                             |
|        | ,,            | Tibia                       | 0,23         | :DA                                  | •                               | NDA                                 |                                 |
| 1012   | Noddy tern    | Whole                       | 145          | 1,1                                  | 7.8                             | 1.7                                 | 12                              |
| 1013   | Noddy tern    | Muscle                      | 16.9         | 0,10                                 | 5.9                             | 0,13                                | 7.7                             |
| 1010   | Houry term    | Tibla                       | _S <b>95</b> | 0,07                                 | 7.5                             | 0,027                               | 30_2                            |
| 1014   | Noddy tern    | Egg Shell                   | 3            | -IDA                                 | NDA                             | 0,13                                | 21.3                            |
| 1474   | noug tela     | Egg, soft<br>tissue         | 21           | ,08                                  | 3                               | 0.03                                | 1,4                             |

Gross Beta and Uanuna Activity of the and Polytinens -

(Continued)

-47-

n and a second and a second and a second and a second second second second second second second second second s In a second second second and a second sec In a second s



• -

4.5 đ.

1

AND DUAL THE AND A DUAL OF STREET, IN STREET, AND ADDRESS

s and the formation of the large of the provide the second second second second second second second second sec 1 I W 1

When a bar a site in a site

## TABLE A.3 Cont'd

| Sample        |              | · · ·           | Wet         | Gtors B                              | cta                              | Gross Ga                            | mma                             |
|---------------|--------------|-----------------|-------------|--------------------------------------|----------------------------------|-------------------------------------|---------------------------------|
| No.           | Sample       | Tissue          | 141<br>(3)  | (4/in/tample<br>x 10 <sup>-4</sup> ) | (d/m/'ıg<br>x 10 <sup>-4</sup> ) | (d/m/sample<br>x 10 <sup>-4</sup> ) | (d/m/k)<br>x 10 <sup>-4</sup> ) |
| RONGE         | LAP ATOLL    |                 |             |                                      |                                  |                                     |                                 |
| Kal           | belle Island |                 |             |                                      |                                  | · • • •                             | • •                             |
|               | Birds (cont' | d)              |             |                                      |                                  |                                     |                                 |
| 1017          | Noddy tern   | Egg shell       | 4.5         | NDA                                  | NDA                              | 0,13                                | 28,4                            |
| •             | -            | Egg, soft       | 24.5        | 0.24                                 | 9.5                              | 0.03                                | 1,4                             |
| •             |              | tissue          |             |                                      | 1                                |                                     |                                 |
|               |              | •               |             |                                      |                                  |                                     |                                 |
| PONCE         | UK ATOLL     | · •             |             |                                      | ÷ 13                             |                                     |                                 |
|               |              | . `             |             |                                      |                                  | •                                   |                                 |
| Eniv          | vetak Island |                 | •           |                                      | ,                                |                                     |                                 |
| • •           | Fish         | · • • •         |             |                                      | •                                | 1. A.                               | •                               |
| 1559B         |              |                 | 1.05        |                                      |                                  |                                     |                                 |
|               | Surgeon      | Whole           | 105         | 0.41                                 | <b>•</b> .9                      | 0,69                                | 6_7                             |
| 1561          | Half-benk    | Whole           | 30          | 0.03                                 | 1.0                              | 0,46                                | 15.3                            |
| 1563          | Butterfly    | Whole           | 28          | 0.03                                 | 1.2                              | 0,16                                | 5,9                             |
| 1564          | Damsel (3)   | Whole           | 50          | 0,11                                 | 4,4                              | 0,24                                | 2.1                             |
| 1565          | Squirrel     | Whole           | 10 <b>2</b> | 0.15                                 | 1.4                              | 1.2                                 | 11.8                            |
| 1560          | Squirret     | Whole           | 387         | 0.41                                 | 1,1                              | 2.0                                 | 5.2                             |
|               |              | Head            | 64          | 0.23                                 | 3.6                              | 0.55                                | 8,5                             |
|               |              | Muscle          | 113         | 0.04                                 | .36                              | 0.27                                | 2,3                             |
|               |              | Gill            | 13          | 0.02                                 | 1.2                              | 0.08                                | 6,5                             |
|               |              | Viscera<br>Bone | 38          | 0.04                                 | 1,1                              | 0.38                                | 9.9                             |
|               |              | Skip            | 65<br>76    | 0.06<br>0.02                         | 0.9 <b>6</b><br>0 <b>.19</b>     | 0,39                                | 6.0                             |
|               |              | UR LA           |             | 0.02                                 | 0.19                             | 0,35                                | 4,5                             |
|               | Crab         |                 |             | :                                    |                                  |                                     |                                 |
| 1025          | Red eye      | Whole           | 60          | 0.17                                 | 2.8                              | 1,1                                 | 18.3                            |
|               | Birds        |                 |             | . •                                  |                                  |                                     |                                 |
| 1025B         | Noddy tern   | 141.018         | 28          | 3.1                                  | 31                               | 1.9                                 | 20,6                            |
| 1025 <b>D</b> | Fairy tern   | Wathe           | 8 <b>8</b>  | 0.75                                 | 8.3                              | NDA                                 |                                 |
| 025A          | Fairy tern   | When ie         | 103         |                                      |                                  |                                     |                                 |
|               |              | Mascle          | 12.4        | 0.033                                | 2.7                              | 0,026                               | 2.22                            |
|               |              | Tible           |             | NDA                                  |                                  | NDA                                 |                                 |
|               |              | Viscera         |             | 0.075                                |                                  | 0.12                                |                                 |

#### Gross Bets and Common Just's towned to former

-48-

(Continued)

$$\label{eq:starting} \begin{split} & \mathcal{D}_{1} = \left\{ \begin{array}{c} \mathcal{D}_{1} = \left\{ \mathbf{x}_{1} + \mathbf{y}_{2} + \mathbf{y}_{2$$

----

1.4

and and the set

1

alternet of series second differences and the second differences of the second difference of the

÷Ì į.

7 1 -

....

•••

ŝ ŗ ¥

.

· · ·

المراجع المراجع المراجع والمراجع والمراجع والمراجع المحاج والمراجع

------

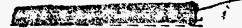
j I

## TABLE A.3 Cont'd

Gross Beta and Comme Activity of Animal Specimens

|                    | . •            |             | Wet         | Gtoss B                             | Gross Beta |                                      | Gross Garams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|--------------------|----------------|-------------|-------------|-------------------------------------|------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Sample<br>No.      | Sample         | Tissue      | Wt<br>(g)   | (d/m/sample<br>x 10 <sup>-4</sup> ) |            | (d/m/i3inple<br>x 10 <sup>-4</sup> ) | and the state of t |  |
| RONGER             | IK ATOLL       |             |             |                                     |            |                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Eniw               | etak Island    |             |             |                                     |            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                    |                |             |             |                                     |            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                    | Birds (cont'd) |             |             |                                     |            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1025C              | Noddy tern     | Whole       | 211         |                                     |            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                    | -              | Muscle      | 27          | 0,05                                | 1,9        | 0,038                                | 1,45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    |                | Tibia       | 0,23        | NDA                                 |            | NDA                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                    |                | Viscera     |             | 0.03                                |            | 0.05                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                    |                |             |             |                                     |            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                    | NAE ATOLL      |             | ٠.,         |                                     |            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| <u>Si</u>          | fo Island      |             |             |                                     |            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                    | Fish           |             |             |                                     |            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1551D              | Surgeon        | Whole       | 45          | 0,37                                | 8.2        | 0.55                                 | 12 <b>.2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 1551D <sup>1</sup> | -              | Whole       | 25          | 0,18                                | 7.1        | 0.42                                 | 16.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 1552               | Angel          | Whole       | 203         | 0,68                                | 3,4        | 5.0                                  | 24.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 1555               | Butterfly      | Whole       | 134         | 0,32                                | 2.4        | 1,6                                  | 12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 1551A              | Red snapper    | Whole       | 640         | 3,2                                 | 5.0        | 38,9                                 | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 1002.0             | neu inapper    | Head        | 115         | 0.73                                | 6.3        | 9,9                                  | 86.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    |                | Gills       | 18          | 0.12                                | 6.7        | 2.7                                  | 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                    |                | Viscera     | 24          | 0.92                                | 38.2       | 3.6                                  | 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                    |                | Muscle      | 283         | 0.60                                | 2,1        | 6.2                                  | 21.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    |                | Bone        | 110         | 0.53                                | 4.8        | 10.6                                 | 98.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    |                | Skin        | 75          | 0.31                                | 4.1        | 5,9                                  | 78.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 1551C              | Squirrel       | Whole       | 37 <b>3</b> | 0.28                                | 0.75       | 3.5                                  | 9,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 10010              | oquirer        | Head        | 57          | 0.035                               | 0,61       | 0,96                                 | 16,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    |                | Gill        | 12          | 0.012                               | 1.0        | 0,19                                 | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    |                | Viscera     | 36          | 0.067                               | 1.86       | 0,41                                 | 11,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    |                | Muscle      | 107         | 0.061                               | .57        | 0.41                                 | 3,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                    |                | Bone        | 53          | 0.052                               | .98        | 0,72                                 | 13,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    |                | Skin        | 84          | 0,051                               | .61        | 0,83                                 | 9,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                    | Crab           |             |             |                                     |            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 670                | Hermit         | Whole       | 5 <b>2</b>  | 2.1                                 | 40.2       | 0.86                                 | 16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    |                | Soft tissue | 150         | 1.2                                 | 7.9        | 1.5                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 672                | Coconut        | Whole       | 121         | 0,30                                | 2,5        | 1.7                                  | 14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 1021               | Reef           |             |             | 0.81                                | 23.2       | 0.44                                 | 12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 10211              | Hermit         | Whole       | 35          | 10.01                               |            |                                      | ntinued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |

-49-


(Continued)

141 - 141 - 41

a kan bara ang sana Sana ang san  $(\sigma_{A}, \sigma_{A},  

-

Acres



- in the second

S. Sateria

المسارية مالسامينا واجما

い、御御御谷を

we nother

میکارد. از از میراندهای میراند. میکارد. از بال میراند است.

2 I

4 \* • 

<u>د</u> :

1

and the second 
· . .

and a second 
i

## TABLE A.3 Cont'd

| Sample        | •          |                     | Wet        | Cross B                             | eta                             | Gross Ga                            | mma                             |
|---------------|------------|---------------------|------------|-------------------------------------|---------------------------------|-------------------------------------|---------------------------------|
| No.           | Sample     | Tissue              | ₩t<br>(g)  | (d/m/sample<br>x 10 <sup>-4</sup> ) | (d/m/kg<br>x 10 <sup>-4</sup> ) | (d/m/sample<br>x 10 <sup>-4</sup> ) | (d/m, k<br>x 10 <sup>-4</sup> ) |
| AILING        | NAE ATOLL  |                     |            |                                     |                                 |                                     |                                 |
| 5             | ifo Island |                     |            |                                     |                                 | ·.                                  |                                 |
|               | Clam       |                     |            |                                     |                                 |                                     |                                 |
| 1549          | Killer     | Soft tissue         | 1104       | 7.1                                 | 6,4                             | 17.1                                | 15.0                            |
|               | Birds      |                     |            |                                     |                                 |                                     |                                 |
| 1018          | Fairy tern | Carcass             | 9 <b>9</b> | 1.0                                 | 10,1                            | 0.17                                | 1,77                            |
|               |            | Muscle              | 16         | 0.078                               | 4.9                             | 0.46                                | 28.9                            |
|               |            | Viscera             |            | 0.05                                |                                 | .04                                 |                                 |
|               |            | Tibia               | .297       | NDA                                 |                                 | NDA                                 |                                 |
| 1019 <b>A</b> | Noddy tern | Carcass             | 96         | .038                                | 3.9                             | 3,3                                 | 33.9                            |
|               |            | Viscera             |            | 0,072                               |                                 | 0.20                                |                                 |
|               |            | Muscle              | 10.7       | 0.05                                | 4.68                            | 0,56                                | 5.3                             |
|               |            | Tibia               | 0.265      | NDA                                 |                                 | NDA                                 |                                 |
| 1019 <b>B</b> | Fairy tern | Whole               | 163        |                                     |                                 |                                     |                                 |
|               |            | Viscera             |            | NDA                                 |                                 | 0,14                                |                                 |
|               |            | Muscle              | 7,9        | 0.05                                | 6.3                             | 0.016                               | 2,1                             |
|               |            | Tibia               | 0,34       | NDA                                 |                                 | NDA                                 |                                 |
| 1019 <b>C</b> | Noddy tem  | Whole               | 185        | 0,16                                | 0,86                            | 0.025                               | 3.37                            |
| 1022          | Noddy tern | Whole               | 94         |                                     |                                 |                                     |                                 |
|               |            | Viscera             |            | 0.24                                |                                 | 0,175                               |                                 |
|               |            | Muscle              | 10         | 0,04                                | 4.2                             | 0.44                                | 44.                             |
|               |            | Tibia (2)           | 0.72       | NDA                                 |                                 | NDA                                 |                                 |
| 1020          | Noddy tern | Egg                 | 39         |                                     |                                 |                                     |                                 |
|               |            | Eggshell            | 6          | NDA                                 |                                 | 0.06                                | 10.3                            |
|               |            | Egg, soft<br>tissue | 33         | 0,26                                | 7.9                             | 0,11                                | 3.2                             |

Gross Beta and Gamma Activity of Animal Specimens

(Continued)

ñ

-50-

....

Section of the sector

÷

. .

1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 19

1 F 1 F 1 F 1 F 1 F 1 F 1 F

和

C. . O ME SAR POP

----

na series de la companya de la compa

N = 1

1 g - 6

TABLE A.3 Cont'd

|               |             | •           | Wet       | Gross B                              | eta                            | Gross Gas                           | mma                |
|---------------|-------------|-------------|-----------|--------------------------------------|--------------------------------|-------------------------------------|--------------------|
| Sample<br>No. | Sample      | Tissue      | Wt<br>(g) | (1/in/sample<br>x 10 <sup>-4</sup> ) | (d/m/kg<br>x 10 <sup>4</sup> ) | (d/m/sample<br>x 10 <sup>-4</sup> ) | (d/m/kg<br>x 10-4) |
| UTIRIK        | ATOLL       |             |           |                                      |                                |                                     |                    |
| Uti           | rik Island  |             |           |                                      |                                | . •                                 |                    |
|               | Fish        |             |           |                                      |                                |                                     |                    |
| 1573          | Squirrel    | Whole       | 23        | NDA                                  |                                | 0.12                                | 5.4                |
| 1576          | Angel       | Whole       | 44        | NDA                                  |                                | 0.07                                | 1.6                |
| 1581          | Goat        | Whole       | 48        | 0.3                                  | 6.5                            | 0,14                                | 2.9                |
| 1583          | Damsel      | Whol:       | 48        | NDA                                  |                                | NDA                                 |                    |
| 1584          | Butterfly   | Whole       | 68        | NDA                                  |                                | NDA                                 |                    |
| 1596          | Manini      | Whole       | 129       | 0.88                                 | 6.8                            | 0.58                                | 4.5                |
| 1595          | Half-beak   | Whole       | 123       | NDA                                  | 0.0                            | NDA                                 | 1,4                |
| 1580          | Gray parrot | Whole       | 425       | 0.66                                 | 1,5                            | 0.87                                | 2.1                |
| 1000          | Giay partor | Head        | 32        | NDA                                  |                                | 0.09                                | 2.8                |
|               |             | Gill        | 10        | NDA                                  |                                | 0_04                                | 4.1                |
|               |             | Viscera     | 82        | 0,38                                 | 4.6                            | 0.15                                | 1.8                |
|               |             | Bone        | 65        | 0,13                                 | 1,9                            | 0.13                                | 1.9                |
|               |             | Musche      | 172       | 0.15                                 | 0.87                           | 0.22                                | 1.3                |
|               |             | Skin        | 47        | NDA                                  |                                | 0.24                                | 5.1                |
|               | Snail       |             |           |                                      |                                |                                     |                    |
| 1590          | Ghost       | Soft tissue | 19        | NDA                                  |                                | 0.075                               | 3,9                |
| 1591          | Reef        | Soft tissue | 195       | NDA                                  |                                | 1                                   | 4,6                |
| 1585          | Spider      | Soft tissue |           | 0.018                                |                                | NDA                                 |                    |
|               | Mammai      |             |           |                                      |                                |                                     |                    |
| 157 <b>1</b>  | Rat         | Tibia (2)   |           | NDA                                  |                                | NDA                                 |                    |

Gross Beta and Commin Activity of the second contract

(Continued)

<u>All Intersections</u>

and a second

ena esta de passos.

• • • •



7

. A

الم المواد ال

·

· · · · · · · · · · ·

and the second second second

THE PLAN AND AND

İ

**1** Ì

i, h

Contract of the second

ţ

:

į

i . 1

1

· · · ·

4.5

Sector State

a fare

### TABLE A.3 Contid

1918-18-18

.....

| Comple.       | :            |         | Wet         | Gross B                             | e(a •                           | Grots Gat              | nin <b>s</b>                    |
|---------------|--------------|---------|-------------|-------------------------------------|---------------------------------|------------------------|---------------------------------|
| Sample<br>No, | Sample       | Tissue  | Wt<br>(g)   | (d/m/sample<br>x 10 <sup>-4</sup> ) | (d/m/kg<br>x 10 <sup>-4</sup> ) | (d/m/sample<br>x 10-4) | (d/m/kg<br>x 10 <sup>-4</sup> ) |
| LIKIEP A      | TOLL         |         |             |                                     |                                 |                        |                                 |
| . <u>L</u>    | ikiep Island |         |             |                                     |                                 | • ·                    |                                 |
|               | Fish         |         | ÷           |                                     |                                 |                        |                                 |
| 1605          | Butterfly    | Whole   | 119         | 0,25                                | 2,1                             | 0.31                   | 2.6                             |
| 1607          | Parrot       | Whole   | 34 <b>9</b> | NDA                                 |                                 | 0.38                   | 1.1                             |
| 1611          | Damsel (3)   | Whole   | 61          | 0,38                                | 6.2                             | 0.13                   | 2,1                             |
| 1612          | Surgeon      | Whole   | 51          | NDA                                 |                                 | 0,02                   | 0,39                            |
| 1613          | Grouper      | Whole   | 76          | 0.38                                | 4,9                             | .012                   | .16                             |
| 1609          | Gray mapper  | Whole   | 453         | 1,1                                 | 2.4                             | 2.2                    | 4,9                             |
|               |              | Head    | 38          | NDA                                 | . · · · ·                       | 0,021                  | 5,5                             |
|               |              | Gill    | 14          | NDA                                 |                                 | NDA                    |                                 |
|               |              | Viscera | 78          | 1                                   | 12.8                            | 2                      | 25,1                            |
|               |              | Muscle  | 144         | 0,1                                 | 0.7                             | 0.21                   | 1,5                             |
|               |              | Bone    | 99          | NDA                                 |                                 | NDA                    |                                 |
|               |              | Skin    | 63          | NDA                                 |                                 | NDA                    |                                 |

Gross Beta and Gamma Activity of ministed Operations

in energy The state ان مان الماني المانية. مانغ ماني 1. 1. 1 x. 1.60 - 1. - 2 ana bangarén nén dia kawa dia serah sina

#### DISTRIBUTION

#### COPIES

American and

Sec. Sec.

「「「「「「」」」」

-----

i

÷

1 1A 1 4. 41

| 1-4   | AEC, Division of Biology and Medicine                  |
|-------|--------------------------------------------------------|
| 5     | University of Washington, Applied Fisheries Laboratory |
| 6     | New York Operations Office                             |
| 7     | Chief of Naval Operations (Op-36)                      |
| 8     | Chief, Bureau of Medicine and Surgery                  |
| 9     |                                                        |
|       | Chief, Bureau of Ships, (Code 348)                     |
| 10    | University of Chicago (Dr. Martell)                    |
| 11    | Director, Naval Research Laboratory (Code 2021)        |
| 12    | Director, Naval Research Laboratory (Code 1501)        |
| 13    | CO, Naval Unit, Army Chemical Genter                   |
| 14    | CO, CmlC Ghumical and Radiological Laboratories        |
| 15    | CO, Chemical Corps Board                               |
| 16    | Chief, Armed Forces Special Weapons Project            |
| 17    | AFSWP, SWTC, Sandia Base                               |
| 18    |                                                        |
|       | AFSWP, Field Command, Sandia Base                      |
| 19    | Assistant Secretary of Defense (Res. and Dev.)         |
| 20-40 |                                                        |
| 20-40 | USNRDL, Technical Information Division                 |
|       |                                                        |

Date Issued: 28 August 1956



2.5

1100

. .

and the second second second second second second second second second second second second second second second

| USNRDL-455<br>RESIDUAL CONTAMINATION OF PLANTS<br>NIMALS, SOIL, AND WATTER OF THE MARSHALL<br>CLANDS TWO YEARS FOLLOWING OPERATION<br>ANTE FALLOUC, H.V. Weiss, S.H. Cohn and<br>CLANDE FALLOUC, H.V. Weiss, CONFIDENTIAL<br>CLANDER AND HIGH, IV, SECTION CONFIDENTIAL<br>CLANDER AND CONFIDENTIAL IN<br>CONTRACTOR OF CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL<br>CLANDER OF CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL INCOMPANIES ON CONFIDENTIAL | <ol> <li>Plants-Radiation effects</li> <li>Animals- Rad. eff.</li> <li>Soil - Rad. eff.</li> <li>Water - Rad. eff.</li> <li>Fallout - Radiation from</li> <li>H. V. Weiss</li> <li>S. H. Cohn</li> <li>Title</li> <li>IV. CASTLE</li> <li>V. NS 081-001</li> </ol> | USNRDL-455<br>RESIDUAL CONTAMINATION OF PLANTS<br>ANIMALS, SOIL, AND WATER OF THE MARSHALL<br>ISLANDS TWO YEARS FOLLOWING OPERATION<br>CASTLE FALLOUT, H.V. Weiss, S.H. Cohn and<br>others. 15 Aug. 1956, iv. 53p.tables CONFIDENTIAL<br>The amount and distribution of radioactive material                                                                                                                                                                                                                                                                                                 | 1. Plants - Radiation effect<br>2. Animals - Rad. eff.<br>3. Soil - Cad. eff.<br>4. Water - Rad. eff.<br>5. Fallout - Radiation from<br>I. H.V. Neiss<br>fl. S.I. Cohn<br>III. Tion<br>IV. C. STORE<br>V. NS 50001 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                    | Naval Radiological Defense Laboratory.<br>USNRDL-455<br>RESIDUAL CONTAMINATION OF PLANTS<br>ANIMALS, SOIL, AND WATER OF THE MARSHALL<br>ISLANDS TWO YEARS FOLLOWING OPERATION<br>CASTLE FALLOUT, H.V. Weiss, S.H. Cohn and<br>others. 15 Aug. 1956, iv. 53p. tables CONFIDENTIAL<br>The amount and distribution of radioactive material<br>remaining on several atolls and incorporated into<br>plants and animals of the Marshall Islands was deter-<br>mined two years after their contamination<br>by fallout from the March 1, 1954<br>nuclear detonation of Operation CASTLE.<br>(over) | 1. Pla at - Radiation effec<br>2. An: a (a - Rad. eff.<br>3. Son - Dad, eff.<br>4. Wron - Rad. eff.<br>5. Factor - Radiation from<br>I. H.' - Jeiss<br>II. S. (. Cohn<br>III. 7. C. J. LE<br>V. No 6. 1-001        |

ı

۰,

.

.....

•

.

. .

•

10.00

1

1

,

-

.

Ì

÷

Readily detectable amounts of radioactive contamination were found in animals, plants and soil. Most of the activity in the edible portion of plant specimens was contributed by cesium-137.

The major radionuclides found in the tissues of fish was zinc-65, and that in clams, cobalt-60,

Residual soil contamination remained confined to the surface,

Solidily detectable amounts of radioactive contamination were found in animals, phono and soil. Most of the activity in the edible portion of plant specimens was characterised by cesium-137.

first major radionuclides found in the tissues of fish was zine-65, and that in c = 6.05, cobalt-60.

The major radionuclides found in the tissues of fish was zinc-65. and that in clams, cobalt-60.

Residual soil contamination remained confined to the surface.



| 1. |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | ANIMALS, SOIL, AND WATER OF THE MARSHALL<br>ISLANDS TWO YEARS FOLLOWING OPERATION<br>CASTLE FALLOUT, H.V. Weiss, S.H. Cohn and<br>COMPL. 15 Aug. 1956, iv. 53 p. tables CONFIDENTIAL<br>The amount and distribution of radioactive mate- | <ol> <li>Plants-Radiation effects</li> <li>Animals- Rad. eff.</li> <li>Soil - Rad. eff.</li> <li>Water - Rad. eff.</li> <li>Fallout - Radiation from</li> <li>H. V. Weiss</li> <li>S. H. Cohn</li> <li>Title</li> <li>V. CASTLE</li> <li>V. NS 081-001</li> </ol>          | Naval Radiological Defense Laboratory,<br>USNRDL-455<br>RESIDUAL CONTAMINATION OF PLANTS<br>ANIMALS, SOIL, AND WATER OF THE MARSHALL<br>ISLANDS TWO YEARS FOLLOWING OPERATION<br>CASTLE FALLOUT, H.V. Weiss, S.H. Cohn and<br>others. 15 Aug. 1956, iv. 53p.tables CONFIDENTIAL<br>The amount and distribution of radioactive material<br>remaining on several atolls and incorporated into<br>plants and animals of the Marshall Islands was deter-<br>mined two years after their contamination<br>by fallout from the March 1, 1954<br>nuclear detonation of Operation CASTLE.<br>(over)  | 1. Plants - Radiation effects<br>2. Animals - Rad. eff.<br>3. Soil - Rad. eff.<br>4. Water - Rad. eff.<br>5. Fallout - Cadiation from<br>I. H. V. Micras<br>fl. S. H. Cloun<br>III. Title<br>IV. CASTER<br>V. NS 081-001 |
|    | SUANDS TWO YEARS FOLLOWING OPERATION<br>CASTLE FALLOUT, H.V. Weiss, S.H. Cohn and<br>others. 15 Aug. 1956, iv. 53p.tables CONFIDENTIAL                                                                                                   | <ol> <li>Plants - Radiation effects</li> <li>Animals - Rad. eff.</li> <li>Soil - Rad. eff.</li> <li>Water - Rad. eff.</li> <li>Fallout - Radiation from</li> <li>H. V. Weiss</li> <li>S. H. Cohn</li> <li>III. Title</li> <li>IV. CASTLE</li> <li>V. NS 081-001</li> </ol> | Naval Radiological Defense Laboratory.<br>USNRDL-455<br>RESIDUAL CONTAMINATION OF PLANTS<br>ANIMALS, SOIL, AND WATER OF THE MARSHALL<br>ISLANDS TWO YEARS FOLLOWING OPERATION<br>CASTLE FALLOUT, H.V. Weiss, S.H. Cohn and<br>others, 15 Aug. 1955, iv. 53p. tables CONFIDENTIAL<br>The amount and distribution of radioactive material<br>remaining on several atolls and incorporated into<br>plants and animals of the Marshall Islands was deter-<br>mined two years after their contamination<br>by fallout from the March 1, 1954<br>nuclear detonation of Operation CASTLE.<br>(over) | 1. Plants - Radiation effects<br>2. Animals - Rad. eff.<br>3. Soil - Nad. eff.<br>4. Water - Rad. eff.<br>5. Fallout - Dadiation from<br>I. H. V. Weiss<br>II. S. H. Colta<br>III. Title<br>IV. CASTIE<br>V. NS 081-601  |

المرجل المطلة مارا بالالم وماصومة محالي المطلاب والمارية محارية معتم متعنا أيراريا والمتعر بمنعا المحام المريا المريا المراجا الالا

٠

٠

.

المحديديان أجاج سافنا أند

and a series to

المراجعة القيم بين الماليطير بيم الرابية ال**مسيني**ات الماليطينيات

فللموجيدين أتدع

• ÷

•

**.** 

.

اردرا بالهاريان الهابين المحرور المحاد وينهجا حادمهمه

The second second second

• يهمو مروم ويومو مورد والمرد و -

ويمرد بو الوار

and states

المواصلة بالمرارد بالعول - الدريقة بالمانة بتعاصيليات - المحافظ المراجع المحافظ المحافظ المحاف المحاف المحاف المحاف المحاف

د المدر عديد المواطنية المانية والي. الموجود الذي

بهم سمديني ورامه إستاريه

١.

-

•

And Million and in the Shame

ę

The Real Property lies

.

;

Readily detectable amounts of radioactive contamination were found in animals, grants and soil. Most of the activity in the edible portion of plant specimens was contributed by cesium-137.

The major radionuclides found in the usual of fish was zine-65, and that in  $m_{\rm e}$  cobalt-60,

successful contamination remained confined to the surface.

-----



Readily detectable amounts of radioactive contamination were found in animals, plants and soil. Most of the activity in the edible portion of phone specimens was contributed by cesium-137.

The major radionuclides found in the tissues of figh was zinc-50, and that in clams, cobalt-60,

Residual soil contamination remained confined to the surface.



Car in

Readily detectable amounts of radioactive contamination were found in animals, plants and soil. Most of the activity in the edible portion of plant specimens was contributed by cesium-137.

The major radionuclides found in the tissues of fish was zinc-65, and that in  $c_{\rm cons}$ , cobalt-60.

Residual soil contamination remained corfined to the surface.

Readily detectable amounts of radioactive contamination we defined in animals, plants and soil. Most of the activity in the edible portion of  $p_{\rm edible}$  specimens was contributed by cesium-137.

The major radionuclides found in the tissues of fish was zince  $db_{1}$  and that in clams, cobalt-60.

Residual soil contamination remained confined to the surface.





| USP<br>RESI<br>ANIM<br>ISLAN<br>CAST<br>chers<br>Tise<br>riai re<br>plants<br>ininec<br>by fal | Radiological Defense Laboratory.<br>NRDL-455<br>DUAL CONTAMINATION OF PLANTS<br>ALS, SOIL, AND WATER OF THE MARSHALL<br>RES TWO YEARS FOLLOWING OPERATION<br>LE FALLOUT, H.V. Weiss, S.H. Cohn and<br>. 15 Aug. 1956, iv. 53p, tables CONFIDENTIAL<br>camount and distribution of radioactive mate-<br>emaining on several atolls and incorporated into<br>a and animals of the Marshall Islands was deter-<br>d two years after their contamination<br>loat from the March 1, 1954<br>ar detonation of Operation CASTLE.<br>(over) | <ol> <li>Plants-Radiation effects</li> <li>Animals- Rad. eff.</li> <li>Soil - Rad. eff.</li> <li>Water - Rad. eff.</li> <li>Fallout - Radiation from</li> <li>H.V. Weiss</li> <li>S.H. Cohn</li> <li>Title</li> <li>IV. CASTLE</li> <li>V. NS 081-001</li> </ol> | ISLANDS TWO YEARS FOLLOWING OPERATION<br>CASTLE FALLOUT, H.V. Weiss, S.H. Cohn and<br>othere. 15 Aug. 1956, iv. 53p.tables CONFIDENTIAL<br>The amount and distribution of radioactive material<br>remaining on several atolls and incorporated into                                                                                                                                                                                                                                                                                                                                          | 1. Plants - Radiation effects<br>2. Animals - Itad. eff.<br>3. Soil - R.d. eff.<br>4. Water - Rad. eff.<br>5. Fallout - R. diation from<br>I. H. V. Weiss<br>II. S. H. Cohn<br>III. Title<br>IV. CASTLE<br>V. NS 081-601 |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                  | Naval Radiological Defense Laboratory.<br>USNRDL-455<br>RESIDUAL CONTAMINATION OF PLANTS<br>ANIMALS, SOIL, AND WATER OF THE MARSHALL<br>ISLANDS TWO YEARS FOLLOWING OPERATION<br>CASTLE FALLOUT, H.V. Weiss, S.H. Cohn and<br>others. 15 Aug. 1953, iv. 53p. tables CONFIDENTIAL<br>The amount and distribution of radioactive material<br>remaining on several atolls and incorporated into<br>plants and animals of the Marshall Islands was deter-<br>mined two years after their contamination<br>by fallout from the March 1, 1954<br>nuclear detonation of Operation CASTLE.<br>(over) |                                                                                                                                                                                                                          |

.

. محمد المراجعة المحمد المعادية الم

•

.

•

.

.

÷. ₽

1 **\* 1 \*** 1

: 

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

10.79 18

٠

. . .

٠

÷

1. Alba 42

...

Readily detectable amounts of radioactive contamination were found in animals, plants and soil. Most of the activity in the edible portion of plant specimens was contributed by cesium-137.

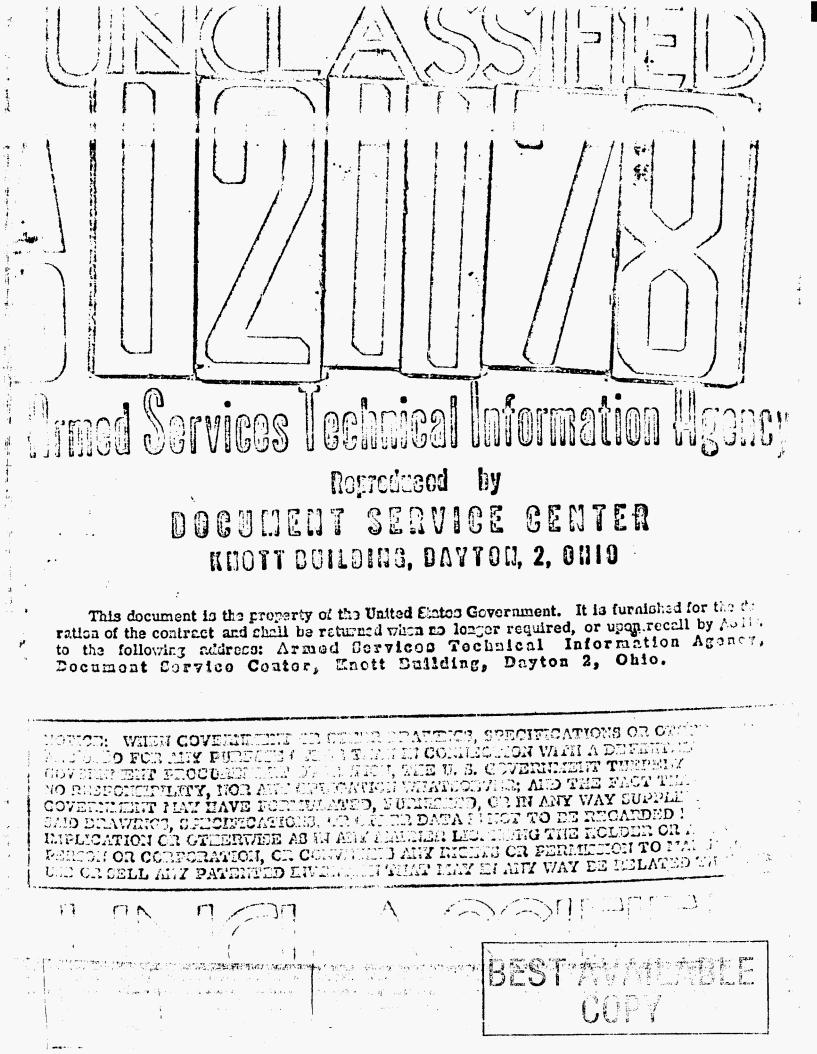
The major radionuclides found in the tissues of fish was zinc-35, and that in clams, cobalt-60.

Residual soil contamination remained confined to the surface.

Readily detectable amounts of radicactive contamination were found in animals, plants and soil. Most of the activity in the edible portion of plant speciments was contributed by cesium-137.

The major radionuclides found in the tissues of fish was zinc-65, and that in claims, cobalt-60.

Residual soil contamination remained confined to the surface.


Readily detectable amounts of radioactive contamination were in plants and soil. Most of the activity in the edible portion of plants contributed by cesium-137.

ad in animals, ecimens was

The major radionuclides found in the tissues of fish was zinc-(  $=_{0}$  and that in clams, cobalt-60.

Residual soil contamination remained confined to the surface.



