VERSITY OF WASHINGTON

SEATTLE WASHINGTON 98105

BEST COPY AVAILABLE

UNIVERSITY ACCHINES RG UNIV. OF WHEN LIERARIES Location APF SOX 10. 3 Folder Reports, 1946-600 UNFL-42

410695

ORT NO. UWFZ-42

UWFL-42

ZNE TNEV. C.

A RADIOLOGICAL STUDY OF RONGELAP ATOLL, MARSHALL ISLANDS, DURING 1954-1955

Applied Fisheries Laboratory University of Washington Seattle, Washington

> Lauren R. Donaldson Director

> > August 15, 1955

Operated by the University of Washington under Contract No. AT(45-1)540 with the United States Atomic Energy Commission.

ABSTRACT

The detonation of shot one at Bikini Atoll on March 1, 1954, produced a fallout of radioactive ash upon Rongelap Atoll, Marshall Islands. The distribution of the radioactive ash on the islands and in the plants and animals of the area has been studied and evaluated by the Applied Fisheries Laboratory, University of Washington.

During the first expedition to Rongelap Atoll on March 26, 1954, biological samples were collected and measurements made of the radiation contamination. On three additional expeditions extensive collections of material were made for this study, the last on January 25-30, 1955.

The decline in radioactivity was measured in 1499 samples of fish, invertebrates, land plants, algae, birds, plankton, soil and water from the Rongelap area.

During this study particular emphasis was placed upon evaluation of the radioactivity in food used by the natives. Coconut milk collected on March 26, 1954, contained 1.03 microcuries per kilogram of wet tissue while the coconut meat had 1.16 uc/kg. By January 25-30, 1955, the level in coconut milk had declined to 0.041 uc/kg and the meat to 0.036 uc/kg. Fish muscle on March 26, 1954, averaged 2.74 uc/kg and fish liver 204. uc/kg. The decline to January 25-30 was 0.10 uc/kg for the muscle and 3.52 uc/kg for the liver of fish. Somewhat similar declines were found for clam muscle, crab muscle, bird muscle and liver, and for squash,

3

م : الم

papaya, arrowroot and pandanus.

The level of radioactivity was highest in the northern portion of the atoll, except for samples of algae and fisheating birds, collected during January 1955 from the southern part of the atoll, which had higher levels of radioactivity than samples collected from the northern islands on the same date. This may indicate a translocation of radioactive materials within the lagoon.

Contents

	Page
Introduction	
Sample processing procedure and techniques	6
Radioactivity and its rate of decline in food items	6
Evaluation of radioactivity in the biological samples	11
Fish	11
Invertebrates	18
Land plants and algae	18
Birds	25
Plankton	31
Soll	32
Water	33
Evaluation of the chemical analyses of the biological samples	36
Study of the rate of physical decay of radiation in the biological samples	41
Appendix	49

Tables (Text)

Table No	•	Page
I.	Radioactivity of foods from Rongelap Atoll, 1954-55	7
II.	Coefficient of variation in percent for values in Table I	7
III.	Radioactivity of fish caught at Kabelle Island, Rongelap Atoll	13
IV.	Radioactivity of fish caught at Rongelap Atoll, other than at Kabelle Island	17
۷.	Radioactivity of Rongelap hirds and bird eggs	27
VI.	Fission products and radio-calcium in soil from Rongelap Atoll	37
VII.	Radio-strontium and radio-cerium in biological samples from Rongelap Atoll	38
VIII.	Decay rates of Rongelap samples expressed as the slope of the log-log relationship of activity to time after March 1, 1954	47
	Tables (Appendix)	
I.	Radioactivity of fish from Rongelap Atoll, 1954-55	50
	Scientific names of fishes	53
II.	Radioactivity of invertebrates other than corals collected at Rongelap Atoll, 1954-55	54
III.	Radioactivity of coral from Rongelap Atoll, 1954-55	56
IV.	Radioactivity of coconuts from Rongelap Atoll, 1954-55	57

10 - A

Tables (continued)

Table ?	•	ege
Ϋ.	Radioactivity of edible plants other than coos- outs from Rongelap Atoll, 1954-55	38
VI.	Radioactivity of plants other than those commonly eaten from Rongelap Atoll, 1954-55	
¥	Recognizity of marine algae from Rongelap Scoll, 1954-55	60
VIII.	Radioactivity of birds collected at Rongelap Atoll, 1954-55	61
IX 。	Radioactivity of tern eggs. from Rongelap Atoll, 1954-55	62
x.	Radioactivity of plankton, soil-sand, and water samples from Rongelap Atoll, 1954-55	63
XI.	Data for computing percent activity of fission products and calcium in Rongelap soil samples based on 1 milliliter replicates	64
XII.	Physical decay rates of Rongelap samples r = t ^{-x} ; to March 1, 1954	65

UNIVERSITY OF A STAR

Figures

Figure No	•	Page
1.	Collecting areas at Rongelap Atoll	
2.	Rate of decline of radioactivity of Rongelap foods	3
3. ″	Average amounts of radioactivity in micro- curies per kilogram in fish tissues from Kabelle Island 19 4-1955	12
4.	Average amounts of radioactivity in micro- curies per kilogram in liver, bone and muscle of carnivorous and omnivorous fishes from Kabelle Island 1954-1955	15,
5.	Redioactivity in microcuries per kilogram in fish tissues collected in the vicinity of Rongelap Atoll, December 1954 and January 1955	16
C ₂	Radioactivity in sea cucumber (<u>Holothuria</u> <u>atra</u>) tissues from Kabelle Island 1954-1955	19
7.	Radioactivity in giant clam tissues: <u>Hippopus</u> on March 26, 1954 at Kabelle; <u>Tridacna</u> on July 16, 1954 at Kabelle, on January 28, 1955 at Labaredj and on January 30, 1955 at Gejen	20
8.	Radioactivity in tissues of the land hermit crab, <u>Coenobita</u> , on March 26 at Labaredj, on July 16, 1954 at Kabelle, and on January 26, 1955 at Rongelap	21
9.	Rate of decline in land plants, algae and soil samples at Kabelle 1954-1955	24
10a.	Decline of radioactivity in muscle, liver, and kidney samples from north Rongelap expressed as a ratio to the March 26, 1954 collection (birds)	28
106.	Decline of radioactivity in bone and ileum samples from north Rongelap expressed as a ratio to the March 26, 1954 collection (birds)	28

UNIVERSE UNIV. OF Wilson

Figures (continued)

Figure No.

- Semi-log plots of decay curves of gastric mill of crab, <u>Grapsus grapsus</u>, and muscle of sea cucumber, <u>Holothuria atra</u>, collected March 26, 1954 at Kabelle
- 12. Log-log plots of Rongelap decay samples of March 26, 1954: plankton from Labaredj; muscle and mantle of giant clam, <u>Hippopus</u>, from Kabelle; and soil on which decay correction factors were based
- Log-log plots of radioactive decay rate of coconut milk, (Cocos) collected December 8, 1954 at Kabelle, and of liver and muscle of surgeonfish (Acanthurus elongatus) collected July 16, 1954

43

Page

44

A RADIOLOGICAL STUDY OF RONGELAP ATOLL, MARSHALL ISLANDS DURING 1954-1955

Introduction

The program of study of the Applied Fisheries Laboratory, University of Washington, (Program 19.1 of Operation Castle) was outlined in the Laboratory's report UWFL-36. This program involved detailed studies of radiological contamination of the fauna and flora of Eniwetok Atoll, with exploratory trips to Bikini Atoll on a quarterly basis to ascertain the levels of radiation remaining during the year following the test program.

The unexpected pattern and magnitude of the fallout of radioactive materials from the March 1, 1954 experiment introduced the need for new areas of study over and above the planned program. One such area was Rongelap Atoll where the fallout resulted in the evacuation of the native people.

On March 21, 1954, the Laboratory recieved a request from Dr. Paul B. Pearson, AEC Division of Biology and Medicine, to make a survey of the islands at Rongelap Atoll to determine the extent of radiological contamination of the native foods.

The expedition to Rongelap, in response to this request, was organized by Task Group 7.1, with transportation and support provided by the USS <u>Nicholas</u> (D D E 449). Members of Program 19.1 were Lauren R. Donaldson, Charles M. Barnes, Edward E. Held, Ralph F. Palumbo and Paul R. Olson. Thomas Shipman, Thomas N. White, P. R. Schivone and W. W. Robbins accompanied the expedition to aid the natives in capturing some of their animals on Rongelap Island and to make radiation readings on some of the

7.5.5

islands in the southern part of the atoll.

Collections of plants and animals, soil samples and radiation readings were made at Labaredj Island on March 26, 1954. Radiation readings were obtained with a Juno (AEC model SIC-17C, serial No. 89) under a variety of conditions. The shield of the instrument was closed for the first reading and open for the second for each of the locations listed below.

Radiation Levels Labaredj Island

March 26, 1954 - mr/hr

Location	Height 3'	Height 1"
Intertidal zone	26 3 1	•
High tide line	2 15 395	300 1000
Open grass area on island	250 330	370 900
Open grass area on island	240 500	280 (6") 700 (6")
In Pisonia woods	270 700	600 1500
Beach rock slabs	37 100	29 400
Beach above high tide line north side of island	180 300	220 600
East side of island above high tide line	200 350	220 700

A second series of collections were made on the same day at Kabelle Island in the extreme northeastern part of the lagoon. Radiation readings were also taken at this island as follows:

ENEV.

-2-

- - Radiation Levels Kabelle Island

- 2 -

March 26, 1954 - mr/nr

Location	Height 3'	Height 1"
Beach rock inter- tidal zone	48 90	30 300
Beach sand at high tideline	190 260	150 350
Edge of brush line on island lagoon side	280 500	370 1400
Open area in vege- tation-covered portion of island	300 600	410 1700
Coconut grove on lagoon side of island	250 370	480 1500
Edge of trees Lee side of trees Windward side of tr	(shield	open) 2000 1500 2800

The second expedition to Rongelap Atoll was made on July 16, 1954. A U.S. Navy Grumman Albatross plane (U.S.N. ASR-16, No. 902) from the U.S. Naval Station, Kwajalein, was used to transport the group to the atoll. Program 19.1 members making the trip were Lauren R. Donaldson, Frank Lowman, Arthur Welander and Lt. Cmdr. Clarence F. Pautzke.

Collections were again made at Kabelle Island and radiation readings taken in the same general areas as those recorded on March 26, 1954.

UNIVERSITY OF THE

Ľ

--- - Radiation Levels Kabelle Island

July 16, 1954 - mr/hr

Location	Height 3'	<u>Height 1"</u>
Low vater line	9	15
High tide mark on beach	50	70
50' inshore from high tide line	29	100
100' inshore from high tide line	28	100
On Scaevola brush	28	100
Under <u>Messer-</u> schmidia	30 •	100
Lee edge of coco- nut grove	20	80
Middle of island in dead brush	25	90
Open clearing in middle of island	27	45
Middle of coconut grove	20	60

During the month of December 1954 three collections of samples were made at Rongelap Atoll. For the first trip on December 8, the U.S. Naval Station, Kwajalein, provided a PEM (No. 2471) with a fine crew. Landings were made at both Kabelle and Rongelap Islands. Dr. Walter D. Claus, AEC Division of Biology and Medicine, accompanied Edward Held, Paul Olson, Robert Taylor and William Blakeman on this expedition. Film strips were placed at a number of locations by Claus, Teylor and Blakeman to record radiation over an interval of time.

On December 18, the Navy again furnished a FBM for the trip to Rongelap to pick up the film strips and to collect additional

 $\frac{\mathbf{UNIN}}{\mathbf{UNIN}} = \frac{1}{2}$

biological samples. A successful landing was made at Rongelap Island where the objective was accomplished. An accident to the anchoring mechanism of the plane, however, prevented completion of the sampling at Kabelle Island. Robert Rinehart and Paul Zigman of U.S.N.R.D.L. accompanied Lauren R. Donaldson, Jared Davis, Edward Held and Paul Olson on this trip.

The most extensive survey and biological collecting trip vas conducted at Rongelap Atoll from January 25 to January 30, 1955. This survey was made in conjunction with U.S.N.R.D.L., with the U.S. Navy furnishing the OG vessel "Rio Grande" for transportation and support facilities. Allyn H. Seymour and Frank Lowman, Program 19.1, shared the responsibility for the biological sampling. Readings were again made with the survey meter on almost all of the islands visited. The readings were taken at a height of three feet unless otherwise noted.

Radiation Levels Rongelap Atoll

January 25-30, 1955 - mr/hr

Rongelap Island	0.5
Eniaetok Island	2.0
Busch Island	1.5
Labared j Island	2.5
Kabelle Island	3.0
ft 11	5.0 at ground level
Lomuilal Island	8.0
Gejen Island	7.0
Lukuen Island	4.0

The collections at Rongelap Atoll during this period of study provided material for 1499 samples which have been processed, the radioactive content determined and the results tabulated and evaluated.

UNIVERSE UNIV. OF S

-5-

Sample Processing Procedures and Techniques

The techniques and procedures used in collecting, storing, preparing, and counting the Rongelap samples were similar to those used in former years. For complete details see WT-616 (UWFL-33). The specimens were put on ice while in the field. Tissues were dissected, weighed and dried at the Eniwetok laboratory. At the University of Washington, the dried samples were ashed at temperatures up to 540°C, cooled, slurried, dried, and then counted in an internal gas-flow counting chamber. Counts per plate were converted to disintegrations per minute per gram of wet tissue as of the date of collection by correcting for sample weight, geometry, backscatter, self-absorption, coincidence, and decay.

-6-

For the summary tables as used in this report, the radioactivity expressed in disintegrations per minute per gram (d/m/g)was converted to microcuries per kilogram by

 $uc/kg = \frac{d/m/g}{(2.2)(10)^3}$

Radioactivity and Its Rate of Decline in Food Items

A general survey of the radioactivity of foods is given in Table I, with the rate of decline^{**} of these items shown in Figure 2. It should be noted that the differences due to species and

 Radiobiological Studies at Eniwetok Before and After Mike Shot, November 1952, Lauren R. Donaldson, Applied Fisheries Laboratory, University of Washington, Seattle, Washington.

^{**} The rate of decline is a phrase coined to express the combined physical decay and the biological uptake and decay rates.

	Table	I. HAGLOR	N		2014			
		Rongelap	Atoll, I	A0++0A				
		in microcu	iries per	kilogran	n of wet i	clesue		
Value	soccald Xa Se				Clams	Crebs	Birc	n S
Date and	Coconuts Maat	$Misc. \frac{1}{}$	Fish Muscle L	lver	Muscle- Mantle	Muscle	Muscle I	Liver
Island 3/26/54	1.03 1.16	11.3	2.74 2	• 40	43.5	70.0	5.38	
Kabelle, Levared 7/16/54	.049 .123		.423	24.0	5.14	2.39	.576	3.23
12/8 or 18/54 Vehalle Rongelap	.019 .0 ⁴ 8	.021	.066	2.05			0 †0 ·	.213
1/26-30/55	036 036	640.	.100	3.52	1.03	498	.129	.418
2/ <u>1</u> / edible portions 2/ Rongelap, Enise	etok, Labared	papaya, ar lj, Xabelle	rowroot, , Gejen,	pardanu: Lomuila	s, spinac) 1. Lukuen	ر د		
Date M11 Date M11 3/26/54 M2(4 7/16/54 10(2 7/16/54 10(2 12/3 or 18/54 37(5 12/6 or 18/54 37(5 1/26-30/55 61(1 2/ number of same of	Table II. Coconuts k Meat k^{2} (1) 2^{2} (1) 2^{2} -57(5) 18) 76(16) ndard deviation	Coefficien for Va Misc. (1) 23(8) 88(16) Lon ; mean	nt of Var lues in ⁷ lues in ⁷ Muscle 65(12) 48(3) 48(3) 68(81) (100)	<pre>iation 1 iable I liver lig(12) 65(20) 30(3) 97(81)</pre>	n Per Cen Clams Muscle- Mantle 36(4) 54(2) 115(4)	t ^{1/} Crabs Muscle 79(3) 35(5) 173(11)	Bir Muscle 41(5) 75(7) 27(4) 99(13)	ds Liver 38(5) 48(7) 37(4) 95(13)

-7-

. •

area, which are considerable and which are evident in the tables of the appendix where all the individual sample counts are tabulated, are not apparent in this generalization. The significance of these differences, however, is discussed on pages 11 to 34. From Table I and Figure 2 the past, present, and future gross radioactivity in the principal food items of Rongelap Atoll can be approximated.

The method selected to indicate the error in estimating the values in Table I is the "coefficient of variation" which is the ratio of the standard deviation to the mean. These values, C, expressed in percent, are given in Table II (page 7). The range in values from 10 percent to 178 percent indicates a high degree of variability.

These data are closest to being points on a straight line when plotted on a log-log scale using the time of the blast, March 1, 1954, as time of origin.

From this data it appears that mixed fission products are the principal source of radioactivity in the food stuffs. Exceptions are bird thyroids, in which the radioactivity was practically all I^{131} , and the gastric mill in a coconut crab, for which the decay curve was nearly a straight line on a semilog plot. For the purpose of making an approximation of the average rate of decline, the slope of a least-squares line through the averages of the points in Figure 2 was determined and found to be -1.75.

The variation in radioactivity associated with area, in most instances, is related to fallout. Rongelap Atoll was on

> UNNER TNN (SI

-9-

the southern edge of the fallout from the March 1, 1954 Bikini experiment and as a consequence there was considerably more radioactivity in the northern part of that eres. The biological samples show the same pattern except for the bird collections and the algae and sand samples from deep waters of the lagoon, taken during January 1955.

-10-

 $\sum UNIVE = 10$

Evaluation of Radioactivity in the Biological Samples

<u>Fish</u>

Almost all of the fish specimens, as in former years, were collected by poisoning with derris root in shallow waters on or near the reefs. Some specimens were caught in the deeper vaters of the lagoon with hook and line. Two flying fish vere channed outside the atoll when they landed aboard ship during the night.

The species selected for analysis are those commonly found on the atolis and used for Tood. They include damselfish, groupers, parrot fish, squitecolfish, surgeonfish, goatfish, vrasse, snappers, mullet and tuna. The scientific names of the species are given in the appendix.

The tissues used for analysis of radioactivity were skin, muscle, bone, liver and other viscera. The latter included part of the stomach contents as well as the alimentary canal, in most cases.

In an attempt to compare similar species from the same locality, analysis was limited to the samples from Kabelle Island. Collections of fish were made in waters adjacent to this island on March 26, 1954, July 16, 1954, and January 29, 1955. The collecting area lies near the north end of the island and consists of a coral-filled channel open to the sea at high tide. The radioactivity of the tissues from the fish collected at Kabelle is summarized in Figure 3. The data are listed in Table III.

TNN ()

-11-

FIG. 3 AVERAGE AMOUNTS OF RADIOACTIVITY IN MICROCURIES PER KILOGRAM IN FISH TISSUES FROM KABELLE ISLAND 1954 - 1955

o UNIMA UNIMA Table III. Redicactivity of Fish Caught

at Kabelle Island, Rongelap Atoll

Values expressed in microcuries per kilogram of wet tissue

514.0 35.7 35.79 <u>्र</u> २...२ २...२ 101.0 11 12 0.38° 38° 10 T'SCEPA 204.0 22.4 3.18 439.0 22.2 2.55 103.0 22.7 8.42 614.0 44.4 4.24 Liver 12.8 2.92 .491 24.7 2.95 .486 7.95 2.90 .500 3.37 1.50 .288 9.45 2.30 .426 Bone Muscle 4.54 .650 .082 2.01 .370 .085 3.45 .256 .085 1.42 .309 2.74 0.50 .083 20.8 2.46 .359 34.5 2.95 .330 14.8 2.03 .414 21.4 2.74 545 7.54 1.47 .303 Skin Number of Specimens 22 4 W 8 820 R 10 10 m v is 3/26/54 7/16/54 1/29/55 3/26/54 7/16/54 3/26/54 7/16/54 1/29/55 3/26/54 7/16/54 1/29/55 3/26/54 7/16/54 1/29/55 Date Damsel fish Carnivores Omnivores All fish Grouper

UNIVE DA

-13-

These data substantiate the general hypothesis, mentioned earlier in this report, that the radioactivity in the tissues appears to be due principally to mixed fission products. Deviations from a straight line in the curves might be due to selective uptake, either by the tissues themselves or because there was selective uptake in the animals used as food by the fishes. In general the slope of the curves compares favorably with the average decline curve used for all food items discussed at the beginning of this report.

Differences between the omnivorous and carnivorous fishes as to amounts of radioactivity in comparable tissues were greatest on March 26, 1954. These differences decreased with passage of time and by January 29, 1955, were negligible in some tissues (Figure 4, Table III). These same data when analyzed by dofinite species of omnivorous fish (damselfish) and carnivorcus fish (grouper) show the same trends (Table III).

Variation in radioactivity, associated with area and relaced to fellout and current movements within and around the stoll, indicates an increase in the contamination of the atoll from south to north (Figure 5, Table IV). The lagoon fish taken in the northern part of the legoon, orf Kabelle or Melle Island, are comparable in levels of radioactivity to reef fishes laken in this region. The two flying fish taken outside the atoll are remarkably alike in tissue radioactivity.

21

~14-

FIG. 4 AVERAGE AMOUNTS OF RADIOACTIVITY IN MICROCURIES PER KILOGRAM IN LIVER, BONE AND MUSCLE TISSUE OF CARNIVORCUS AND OMNIVOROUS FISHES FROM KABELLE ISLAND 1954-1955

26

Transfer 1

Table IV. Radiosctivity in Fish

1

Caught at Rongelap Atoll, other than Kabelle Island

expressed in microcuries per kilogram of wet tissue aul av

ARTRE	T noceo.Idva si						
Date and Area		Number of Specimens	Skin	Muscle	Bone	Liver	V1 scere
1/30/55 Between Rongelap and Rongerik Atolls	Flying fish	Ч	.050	710.	.031	*60 .	.052
2/1/55 Between Rongelap and Ailinginae Atolls	Flying fish	н	.152	410.	.035	011.	.145
1/25/55 Rongelap Island	Omnivores Carnivores All fish	55 55 55 55 55 55 55 55 55 55 55 55 55	.124 .235 .185	.022 .045 .034	.184 .390 .296	1.02 2.74 1.95	2.07
1/28/55 Labaredj Island	Omnivores Carnivores All fish	3713 3713	.577 .741 .632	.159	.682 .782 .718	5.30 .30 .64	17.00 5.36 12.90
1/30/55 Gejen Island	Omnivores Carnivores All fish	-100 O	1.56 .709 .304	.129	1.09 .804 .836	12.4 6.18 6.86	17.1 2.75 4.34
December, 1954 and January, 1955 Lagoon Fish Combined	Carntvores	10	11.1	.081	.278	2.06	1.20

27

-17-

Invertebrates

Rongelap invertebrates showed levels of activity of from 10² to 10⁴ uc/kg on March 26, 1954. By late January 1955 the levels had dropped about two orders of magnitude. The almost ubiquitous black sea cucumber, Holothuria atra, serves best to exemplify the trend (Figure 6). Next best as indicators were giant clams, Hippopus and Tridacna; land hermit crab, Coenobita; coconut crab, Birgus; corals; and spider snail, Pterocera. Radioactivity was highest in the digestive and excretory organs, intermediate in the integumentary organs, and lowest in the muscle. Actual values for the samples are tabulated in the appendix. The kidney of the giant clam (Figure 7) is of special interest because of its high level of activity and slow rate of decline. A graph of activity of the tissues of land hermit crabs collected at the more radioactive northern islands in March and July 1954, and from a less radioactive southern island in January 1955, shows the effect of geographical differences in radioactivity upon the trend of decline, accentuating the slope in the later period (Figure 8). The spider snail was similar to the hermit crab in the level of activity of its tissues, while the corals were about an order of magnitude lower.

Land Plants and Algae

Land plant and algae collections were made at Labaredj, Kabelle, Lomuilal, Gejen, and Rongelap Islands. Most of the edible plants were collected in December 1954 and January 1955 at Rongelap Island. These were coconut, squash, papaya, arrow-

0

-18-

ð.

FIG. 7 RADIOACTIVITY IN GIANT CLAM TISSUES : <u>HIPPOPUS</u> ON MARCH 26, 1954 AT KABELLE; <u>TRIDACNA</u> ON JULY 16, 1954 AT KABELLE, ON JANUARY 28, 1955 AT LABAREDJ AND ON JANUARY 30, 1955 AT GEJEN

Ľ

0.5

 $\frac{\tau}{1}$

FIG.8 RADIOACTIVITY IN TISSUES OF THE LAND HERMIT CRAS, <u>CCENOBITA</u>, ON MARCH 26 AT LABAREDJ, ON JULY 16, 1954 AT KABELLE, AND ON JANUARY 26, 1955 AT RONGELAP

rcot, pandanus, spinach, and Morinda. The algae were collected both in the shallow water near shore and in the deeper water of the lagoon, usually in the vicinity of the fish-collecting stations.

Sample values are given in Appendix Tables IV, V, VI and VII. From these tables it can be seen that the activity varies widely even within samples of the same kind. In January, for example, the pulp from one papaya had an activity of 8.6 x 10^{-7} uc/g (wet), the highest level found in any edible plant portion on that date, while the pulp from a second papaya specimen had an activity of 1.3 x 10^{-7} uc/g (wet).

In both edible and non-edible plants the specific activity was higher in the leaves than in the fruit, the difference generally being two to eightfold. Much of the activity in the March 1954 plant samples was probably due to surface contamination. High counts in the internal portions of stems, however, indicated rapid uptake of fission products by absorption through the root systems. Later collections also indicate uptake of fission product material within the leaf tissue. For example, leaf buds formed after the initial fallout contain as much activity as do older leaves, and washing removes very little of the activity.

In the earliest collections the bark of shrubs and trees and the epidermis of edible plant parts contained from $l\frac{1}{2}$ to 40 times more activity than the internal parts. In the later collections, however, this ratio was always less than two. It is not definitely known, however, whether differential uptake or

1NN

-22-

residual surface contamination accounts for the higher activity of the external plant parts.

Levels of activity in successive collections through and including December 1954 drop in accordance with the expectation for mixed fission products. The January 1955 land plant collections, however, show a trend toward increasing activity levels (Figure 9). This could be due to a sampling error, but might also be a reflection of greater availability of the fission products to the plants associated with more rainfall during late December to January.

The values for arrowroot collected on Rongelap Island in January 1955 fell within the range of values for arrowroot from the northern islands. The same is true of algae collected at depths of 10 to 25 fathoms in the vicinity of Kabelle and Rongelap Islands. However, the maximum activity levels found in <u>Halimeda sp. and Caulerpa sp.</u> from Rongelap are higher by a factor of about two than the maximum levels found in the same species collected at Kabelle. <u>It appears likely then that although maximum fallout occurred at the north end of the atoll, the radioactive material is being redistributed throughout the atoll, at least in the deeper waters.</u>

Decay rates of five individual samples of algae and land plants collected in July and December 1954 indicate half-lives ranging from 160 - 210 days during the period from December 1954 to April 1955. A sample of coconut milk collected at Kabelle Island in December 1954, however, shows a half-life of approximately three years. The slopes of the decay curves of land and

> UNINI UNING SA

Ē

-23-

marine plants, other than the coconuts, differ only slightly from one another and from the slopes of the soil decay curves, the average slope being -1.25 (-1.05 to -1.36). This indicates that in these plants little or no differential uptake of fission product material has been taking place. In coconuts, however, fission products mixtures with longer half-lives have been absorbed into the meat and milk fractions. Decay curve slopes of -.96 and -.54 for the coconut meat and -.24 from the coconut milk indicate a different isotope mixture from that found in soil collected in the same area.

Birds

Birds were collected at four islands of the atoll. Specimens from the northern islands of Gejen, Kabelle and Labaredj were considered to be from the same area and were collected on all four dates, while those from the southern island of Rongelap were taken only on January 26, 1955.

The birds are of two types as based on feeding habits and migratory characteristics. These are: (1) the noddy, crested and fairy terns, which tend to stay in the vicinity of a few islands within the atoll and feed principally on small fish, and (2) the migratory shore birds, which are transients and feed mainly on crustaceans along the beaches. The latter group includes the plovers, curlews, turnstones, and tattlers.

The terns, because of their limited tendency for migration, are more representative than are the shore birds with regard to chronic uptake of radioactive material.

ADA T

35

-25-

The shore birds contained greater amounts of radioactive materials in the different organs and tissues shortly after the fallout at Hongelap than did the terns. A similar tendency was noted in 1952 at Eniweto: following Mike shot (see WT-616 (UWFL-33)).^{*} However, the average levels of activity in the organs of the shore birds decreased more rapidly with increasing time after fallout than did those of the terns. These differences may be accounted for, in part at least, by the differences in feeding habits and migrational characteristics.

The average specific activities of the organs and tissues of Rongelap terns are given in Table V. With the exception of muscle, which is consistently low compared with the other tissues, there is no distinct pattern of relative activities between different organs.

The decline of radioactivity levels in the organs and tissues of terns may be divided into three types (Figures 10a and b): (1) organs in which the decline is semilogarithmic, half-life 40 days -- these include the muscle, liver, and kidney; (2) organs in which the decline is logarithmic -- these are the bone ($r = t^{-2.35}$) and ileum ($r = t^{-2.85}$); and (3) organs in which the variability is extremely great -- the skin and lung represent this group.

The shapes of the radioactivity decline curves for the different organs are determined by a combination of (1) availability of the isotopes, (2) total uptake and degree of selective uptake of different isotopes, (3) radioactive half-life, and (4) biological half-life. Since the relative effects and

* Radiobiological Studies . . . op. cit., p. 6.

.36

END. OF
						~	27-							
	lleum	•62	30 • 0	7.2	16•6	•0586	°486	°425	1.610 .					
	1dney]	18•4 I	132.	2.68	1.50	°172	.173	.240	.183					
	itver K	22.7	35,9	3.60	1 °03	°212	, 814	.226	•154		Enbryo	•335		
1.85ue	lang	7.64	16. 8	14.3	•795	•169	1.10	124	•285		1 te	255	6060	
of wet t	Thyroid	76.4	6.82	6.86	6.68						An the second se	0.0	0	0
logram	Bone	0.11	ó l .	+154	1.69	•0973	•654	.182			Xolk	•93	°13	0 3
s per ki	hiscle .	.82	1.73 1	-641	. 183	•0395	. 256	°0445	°0495	i Egga	Igg Shell	•650	.295	071°
microcurie	Skd n	167. 4	2,260.	1.31	•714	*454	• 586	.173	177.	Blre	uber of ecimens	Ś	ŝ	4
pressed in	Number of Specimens	-1	r-1	ç	rł	4	5	ъ	Q		ind Nu and Sp	54 alle	5 4 8118	55 elle
Xe senter	Organism	noddy and fairy terns	curlew	noddy, fairy, and crested terns	curlew	noddy and fairy terns	fairv tems	tumstone and Plover	noddy and ² airy terns		Late E Isle	7/16/ Kabo	12/8/ Kab	1/29/ Kab
	Date and Igland	3/26/54 Labaredj end Kabelle	3/26/54 Kabelle	7/16/54 Kabelle	7/16/54 Kahelle	12/8/54 Kabelle	1/26/55	nongetap 1/26/55 Rongelap	1/28-30/55 Labaredj, Kabelle, and Gejen			T UNIV	(* ²⁰⁰), *	1 - - ,

•

1.22.3

ج گ

FIG. 10 A DECLINE OF RADIOACTIVITY IN MUSCLE, LIVER, AND KIDNEY SAMPLES FROM NORTH RONGELAP EXPRESSED AS A RATIO TO THE MARCH 26, 1954 COLLECTION

FIG. 10 B DECLINE OF RADIOACTIVITY IN BONE AND ILEUM SAMPLES FROM NORTH RONGELAP EXPRESSED AS A RATIO TO THE MARCH 26, 1954 COLLECTION

UNIV. GI

3

-28-

degrees of interaction of these variables upon the decline of radioactivity with increasing time after contamination are not known, rigid interpretations of the shapes of the curves should not be attempted. However, the curves are useful in estimating the levels of activity in the different organs on given dates following the contamination of the atoll.

Decay curves were made for a limited number of samples. Of these, only that of the thyroid evidenced a preponderance of a single isotope, I^{131} , which accounted for 99.9 percent or more of the total activity. In decay curves for bone, liver, and kidney there was evidence of mixtures of isotopes. Slopes of $r = t^{-1.28}$ for liver, $r = t^{-1.65}$ for bone, and a curve for kidney, which is not a straight line either logarithmically or semilogarithmically, indicate that these organs do not contain similar ratios of radioactive isotopes. The decay curve slope for tern liver is similar to that of Rongelap soil.

Chemical separation for strontium was done on two bird samples collected March 26, 1954, at Kabelle. Skins from two different terns contained 2.9 percent and 3.5 percent of the total activity as radioactive strontium. In samples of total muscle plus total bone from the same birds, Sr⁸⁹⁻⁹⁰ comprised 3.9 percent and 11.3 percent of the total activity (Table VII).

The only collections at Rongelap Atoll containing birds from both the northern and southern islands were made January 26-30, 1955. In view of the fact that the general levels of contamination were higher on the northern islands, it was expected that the northern birds would contain more radioactivity

INN.

39

-29-

than the southern birds. This was not the case except for the skin. The ratios, south to north, of activity for the different organs and tissues are as follows:

skin muscle bone lung liver kidney ileum .79 5.2 6.2 3.9 5.3 4.8 6.1

The presence of more than six times as much activity in the intestinal tract of the southern island terms as that found in the same organ of the northern island terms suggests that the southern birds have access to a supply of food fish containing greater amounts of radioactive material. The higher level of activity in the southern bird intestinal tracts is reflected in the greater concentrations of radioactive material in the other internal organs of the same animals. In view of these observations it probably would be advisable to dotain samples from Alinginae Atoll, located seven and one-half nautical miles southwest of Rongelap Atoll, since the Rongelap natives collect birds at Alinginae as part of their food supply.

Tern eggs were collected at Kabelle July 16, December 8, 1954, and January 29, 1955. The levels of radioactivity in the various parts of the eggs were low, with that of the shell approximating the levels found in the bones of terns collected the same day. Radioactivity in the egg yolks varied from $1\frac{1}{2}$ to 3 times that found in the muscles of birds in the same collections. The whites of the eggs contained the lowest amounts of radioactive isotopes of all bird samples examined. These levels were from 1/25 to 1/2 those found in bird muscle collected the same day.

TNIV. Octor

L

-30-

The unhatched embryos contained levels of radioactivity approximately one-half that found in bird muscle (Appendix Table VIII).

Plankton

The Rongelap plankton collection consisted of a single tow on March 26, paired tows on July 16, December 8 and December 18, 1954, and four paired tows January 26-30, 1955. A Michael Sars type net, $\frac{1}{2}$ -meter in diameter and with either No. 6 or No. 20 silk mesh was used. Tows were taken at the surface during daylight hours.

Radioactivity of the Rongelap plankton samples was more than one hundred times greater than that of plankton samples collected from the open ocean waters of the Western Pacific with the USCGC "Taney" during Operation Troll. On the cruise of the "Taney" during March and April, 1955, 85 plankton samples were taken along the route from Kwajalein to the Philippines to Japan. The average activity of these samples was .015 x 10^{-3} uc/g of wet sample, the highest values being .050 x 10^{-3} uc/g. For the eight January 1955 Rongelap plankton samples the average value was 2.0 x 10^{-3} uc/g, the lowest value being 0.41 x 10^{-3} uc/g.

Other conclusions which may be drawn from analysis of the Rongelap plankton samples are (1) that the radioactivity per unit weight is greater than for most other biological samples, (2) the decay rate is similar to that for the soil sample, and (3) there is considerable variation in the radioactivity of samples from paired tows.

INIV. Cr

-31-

Soil

The soil and samples included those from the islands proper, from the beach, and from the lagoon bottom. The radioactivity of a sample taken from the top inch of soil on Labaredj Island March 26, 1954, was 6.8 microcuries per gwam, which is equivalent to one curie per 325 pounds of top soil. The activity of this sample ten months later, January 29, 1955, was one thirtieth its original value, i.e., it had passed through nearly five half-lives. The decay rate for this period is expressed by the formula, $r = t^{-1.31}$, with March 1, 1054, as the date of origin (Figure 12). This rate approximates the mixed fission product decay rate and in general approximates the decay rate for many of the biological samples. For these reasons the decay factor for correcting counts back to the day of collection was based on the decay curve of a similar soil sample.

The decline in radioactivity of the soil samples can be observed from the figures in Appendix Table X. Considerable variation in the activity of soil samples from the same area on the same day can be expected because of the nature of the fallout pattern and should be kept in mind when interpreting results. If consideration is given to the Kabelle samples only, the rate of decline is greater than the decay rate from March to July 1954, but less from July 1954 to January 1955. When the sample counts from all islands are averaged, the relative decline in activity of the March 1954 samples and the January 1955 samples is the same as the decline in activity of the decay sample.

> NEN C NEN C

> > 42

-32-

Profile samples of the lagoon bottom were obtained off Kabelle Island at depths of 60 feet and 40 feet and off Lomuilal Island at 55 feet. The samples were obtained by an aqualungequipped diver driving a foot long, $1\frac{1}{2}$ "-aluminum tube into the bottom sand. The core was removed from the tube and samples were taken at various levels. From the counts of these samples it was observed that the radioactive sand on the lagoon bottom was several inches thick with the level of activity rather constant for the first five or six inches. The radioactivity per unit weight was less than that of the soil from the island proper but off Kabelle it was greater than that of the sand in the intertidal zone.

Water

The water collection included eight salt-water samples from the lagoon and eight fresh-water samples from the islands proper. A 5-milliliter sample was used for the radioactivity determination except for the December 18th collection (cistern water, filtered well water), for which 25-milliliter samples were used. Because the radioactivity of water samples is often stated in terms of the radioactivity per liter, which would mean extrapolation considerably beyond the observed values, it is especially necessary to state the counting error. For these data the 0.95 counting error, " which is equivalent to two standard deviations, was arbitrarily selected. In Appendix

* AECU-262 (Mon P-126) Statistical methods used in the measurement of radioactivity (some useful graphs) - A. H. Jarrett, T.I.S., Oak Ridge, December 1949.

> 1.11

42

-33-

Table X the values for the water samples expressed in $d/m/ml^{\pm}$ 0.95 counting error are given.

-34-

"Whole water" samples were used for counting, i.e., none of the natural-occurring radioisotopes were chemically removed, so the values in the above table are those for total radioactivity. For ocean waters, the atomic disintegrations per minute per kilogram for potassium-40 are 560 and for all other natural-occurring isotopes about 10." This means that the contribution of natural-occurring isotopes to the values in Appendix Table X for lagoon water samples ranged from 0.6 to 1.2 d/m/ml.

Because of the relatively great counting error of the lagoon water samples neither the rate of decline nor the decay rate was estimated. A conservative approximation of the radioactivity of the lagoon water, based upon the average difference between the observed value and the positive 0.95 counting error for the January 26-30, 1955 samples, is 2400 d/m/l (.0011 uc/l).

For the fresh-water samples the counting data are more reliable (Appendix Table X). The samples include cistern water, filtered well water, standing water and ground water. The standing water was taken from an open can on Eniaetok Island and the ground water from a two-foot hole that was dug on Kabelle Island. The ground water was most radioactive, 48,000 d/m/l (.022 uc per liter) and may have contained radioisotopes that had leached from the soil. However, the decay rate $r = t^{-1.35}$ for the period from March 23 - July 30, 1955, was similar to that for mixed

* Schubert, J., "Radioactive Poisons," <u>Scientific American, 1988</u> Vol. 193, No. 2, pp. 34-39, August 1955.

4(

fission products. For filtered velt water the decay rate for the same period was similar, $r = t^{-1.39}$. Another observation was that the radioactivity of the fresh-water samples increased from south to north with the activity of the Rongelap Island sample being 1/4, 1/6, and 1/10 of the activity of the freshwater samples from Enlactok, Labaredj, and Kabelle Islands, respectively.

-35-

Evaluation of the Chemical Analyses of the Biological Samples

Fission product and calcium analyses were made of three soil samples, strontium analyses of selected foods, and I^{131} analyses of plants. Additional samples collected December 8 were sent to Dr. Walter Claus, Division of Biology and Medicine, for chemical analyses.

Samples were taken from the top inch of soil on March 26, 1954, from both Labaredj and Kabelle. Portions were ashed and then dissolved in dilute nitric acid. There was only a very small amount of insoluble residue containing less than 0.1 percent of ' the radioactivity of the solute. Aliquots of this solution were used to determine total activity and to provide samples for chemical separation.

Standard methods of separating fission products and calcium were followed. Counts obtained from the analyses for cerium, zirconium, niobium, strontium, ruthenium, and barium were corrected for chemical or spike yield. The chemical yield is the ratio of the weight of recovered carrier to added carrier. A yield for calcium was not determined because of the large amount of calcium carbonate in the sample. The radioactivity of seven fission products and calcium corrected for yield and adjusted to 100 percent recovery and expressed as a percentage of the total radioactivity is given in Table VI. The chemical yields and the observed counts from which these values were computed are tabulated in Appendix Table XI.

The results of radiostrontium analyses of biological samples from Rongelap Atoll are given in Table VII. Radiostrontium was UNIV. O

 \mathcal{U}_{t}

-36-

Per Cent Activity 2/

T 1 5	Sar	mple Numbe	or
Llement	7500 3/	7501 4/	7502 5/
cerium	37.	32.	30.
trivalent rare earths	2 4 .	22.	24.
zirconium	16.	25.	24.
niobium	5.9	7.2	7.0
ruthenium	6.9	5.7	5.9
strontium	4.4	• 2.4	2.5
barium	5.5	4.1	6.2
calcium	< .3	6. ي	.4
total	100.	100.	100

1/ samples collected March 26. 1954 and analyzed May 11, 1954, activity as of counting date

2/ per cent activity corrected for yield and adjusted to 100% recovery

3/Labaredj Island 100 feet above high tide line 4/Labaredj Island, 150 feet above high tide line 5/Kabelle Island, 150 feet above high tide line

UNIV.

4

-37-

Table VII. Radio-strontium and Radio-cerium in Biological Samples from Rongelap Atoll Values expressed in micro-microcuries per gram, wet

Date and Boup Tissue Area of Collection Sr	ird Carcass 3/26/54 Labaredj " Skin " Carcass " Kabelle " Skin	quash Fruit 1/26/55 Rongelap apaya " " " " " andanus Meat " " " " " " " " " " " " " " 1/28/55 Labaredj " " " 1/29/55 Kabelle " " 1/30/55 Gejen	crab "" 12/55 Kabelle crab " 12/27/54 Mellu
9+Sr ^{90L}	20. 40. 27.	8.5 0.0 0.0 0.0 0.03	31. 0
90 Sr		848 189	27.
% of total a6tivity Sr89+Sr90	11 6.000 6.000	0.03 0.03 0.05 0.05 0.05 0.05 0.05 0.05	5.7 0
Ce ^{1442/}		1.1 0.70 0.05 0.05 0.05	ر. 0 8.0
系 of total act1代扣V Ce1代扣		ч чооооо 90000 т 4	1.0

the January 1955 collection in The 3/26/54 collection processed in December 1954; the June - July 1955. Values as of date of analyses. Processed in July 1955. Values as of date of analyses. Concert Longer N

.

4

-38-

-39-

found in plants, birds, and crabs but not in fish muscle nor in some of the coconuts. The greatest amount of Sr^{90} found in the January 1955 samples was 27 x 10^{-6} uc/g wet weight of coconut crab muscle.

Method for Radiostrontium Separation. The fuming nitric acid precipitation method was used, the sample being dissolved in dilute nitric acid and structium carrier then added. For the bird tissues the structium was precipitated by increasing the acid concentration to 72 percent by the addition of 90 percent nitric acid and stimming for one-half hour. The precipitated , structium nitrate was dissolved in water, scavenged with ferric hydroxide and precipitated a second time from 72 percent nitric acid, then counted for structium radioactivity. Three spikes run concurrently with the bird samples gave a yield of 59.2 ± 0.9 percent. Separation of Y^{90} from the structium indicated that one-third to one-half of the total structium was structium-90 as of the counting date, December 1954.

Strontium analyses of samples of coconut meat and milk and pandanus fruit from the January 1955 collection were made June 14, 1955. The procedure was similar to that above except that 75 percent nitric acid was used and the scavenge with ferric hydroxide was followed by a scavenge with mixed sulfides in acid and in alkaline solution. Four spikes in non-radioactive fish meal ash run concurrently with these samples gave a yield of 65.6 ± 5.3 percent. Four blanks using the same fish meal and run as a check on the radioactivity in the meal, the reagents and on the glassware gave counts of C, 1, 0, and 0. Yields from

4

1.1.1

spikes run-concurrently with the squash, papaya, crab and fish samples were 84 ± 3.1 percent. From the amount of $3r^{90}$ present which was determined by separation of Y^{90} , daughter of $5r^{90}$, it is evident that only a small amount of $5r^{89}$ could be present (Table VII).

The results of the Ce^{144} analyses are given in Table VII. The maximum amount found was 5×10^{-6} uc in crab muscle, while none was found in some coconut samples. Cerium analyses were made of the filtrate from strontium nitrate precipitation of the coconut, pandanus fruit, squash, crab, and fish samples listed in the above table. The rare earths were extracted with tributyl phosphete, and cerium was separated from the trivalent rare earths by ceric iodate precipitation. Recovery from "spiked" samples of non-radioactive fish meal ash run concurrently were 73 percent for coconut and pandanus fruit, and 75 percent for all the others.

Determinations were made of the amount of radioiodine present in three land plants and two algae collected at Rongelap Atoll on March 26, 1954. These analyses made on April 24, 1954, followed the procedures as outlined by Glendenin <u>et al</u>.

The counts as obtained were corrected back to March 26, 1954. I^{131} was present in all five plant tissues counted, varying from 0.47 percent to 0.029 percent of the total activity found.

-40-

STENESSEE ENEN OF S

^{*} Glendenin <u>et al.</u>, "Interchange of radicactive iodine with carrier iodine." In Coryell, C. D. and Sugarman, N., <u>Radiochemical Studies: The Fission Products</u>, Book 3, p. 1629, McGraw-Hill, 1951.

Study of the Rate of Physical Decay of Radiation in the Biological Samples

The Rongelap samples are now unique among our Marshall Islands collections since they were taken from an area --Rongelap Atoll -- in which the radioactivity resulted primarily from a single time source -- the March 1, 1954 Bikini experiment; whereas the activity at Eniwetok and Bikini derived from several experiments over a number of years.

Rongelap decay data were studied with three primary objectives: (1) to evaluate suitability of the decay correction factor based on soil by a comparison of biological and other materials, (2) to aid in extrapolating into past or future time beyond the period of the present survey, and (3) to compare decay rates with decline rates.

Eighty-four samples of fish, invertebrates, algae, land plants, plankton, birds, and soil were counted an average of 11.5 (range, 2-73) times for various intervals during the period from 38 to 500 days after the Bikini test of March 1, 1954.

When log of count is plotted on the ordinate against log of time after March 1, 1954, on the abscissa (here called a log-log plot), a more nearly straight line is usually obtained than when the abscissa is arithmetic (semi-log plot). A mixture of fission products is supposed (Coryell and Sugarman)[#] to give a straight line by log-log plot with a slope of about -1.25 for the period of time involved in this study. The decay of a single

Coryell, C. D. and Sugarman, N., <u>Radiochemical Studies: The</u> Fission Products, Book 1, p. 456, McGraw-Hill, 1951

1 "1".

isotope is linear on a semi-log plot, exemplified by bird thyroid containing predominantly I^{131} , mentioned in the section on birds.

Among the 28 plates counted most often (10 - 73 times) and presumed to be counted frequently enough to detect the existence of a linear semi-log relationship, only one other sample was more nearly linear by semi-log than by log-log plot. This was the gastric mill of a crab, <u>Grapsus grapsus</u>, taken March 26, 1954, at Kabelle. The graph (Figure 11) was sufficiently curved to indicate the presence of more than one isotope. The early portion 50 - 300 days gave a half-life of 78 days, and the portion 300 - 430 days gave a half-life of 107 days. A section of the curve of another sample, muscle of sea cucumber (Figure 11), was typical of semi-log linearity. The radioactivity of this sample decayed over the period from 50 to nearly 200 days with a half-life of about 75 days, but more slowly later.

Although a single isotope displays a downwardly concave curvilinear plot by log-log presentation, a mixture of as few as two isotopes with half-lives of similar orders of magnitude, such as Ce^{141} and Ce^{144} of 30- and 280- day half-lives, may appear almost linear on a log-log plot over the period of 70 to 500 days.

Most decays were best suited to log-log plotting as seen in the seven examples in Figures 12 and 13. Although some appear slightly curved, straight lines were fitted and slopes were scaled graphically.

Definition of the curves requires evaluation not only of

TNEST ENGV. 1. 1

52

-42-

FIG.11 SEMI-LOG PLOTS OF DECAY CURVES OF GASTRIC MILL OF CHAD GRAPSUS GRAPSUS, AND MUSCLE OF SEA CUCUMBER, HOLOTHURIA ATRA COLLECTED MARCH 26, 1954 AT KABELLE

NTSING.

20**2**

FIG.12 LOG-LOG PLOTS OF RONGELAP DECAY SAMPLES OF MARCH 26, 1954: PLANKTON FROM LABAREDJ; MUSCLE AND MANTLE OF GIANT CLAM, <u>HIPPOPUS</u>, FROM KABELLE; AND SOIL ON WHICH DECAY CORRECTION FACTORS WERE BASED UNIVERSITY

54

UNIV.

(COCOS) COLLECTED DECEMBER 8, 1954 AT KABELLE, AND OF LIVER AND MUSCLE OF SURGEON FISH (ACANTHURUS ELONGATUS) COLLECTED JULY 16, 1954

5.5

UNIX

UNIV.

the degree of-variance or scatter about the line, but also by the nature of the deviation from linearity among the smooth, curvilinear plots. Those curves which were concave upward were fish tissues, none of which had been counted more than seven times.

The average slope of 83 decays on log-log plots was -1.43. Table VIII shows a breakdown into groups by types of organisms and by tissues, and all samples grouped by collecting dates are recorded in Appendix Table XII.

Differences in decay rates of tissues of the animals are not great, although the liver rate of decay is steepest to a degree that is of borderline significance. Comparison of rate of <u>decline</u> of food items, -1.75, with rate of <u>decay</u> of all samples, -1.43, shows that food items, with the exception of such plants as the coconut, decline more rapidly in their radioactive content than can be accounted for solely on the basis of their physical decay. However, the steep trend of decline may result from the inadequacies of sampling. The January 1955 collection may reflect variability in the effects of currents or season. Future sampling will show whether the indicated decline is truly unusually steep, or a vagary of sampling.

From a study of the decay curves it is seen that most biological samples follow the soil trend sufficiently well to justify use of the soil decay rate in correcting sample counts back to the time of collection over short periods. However, some samples diverge widely. Of greatest concern is the coconut, in the milk of which the radicactivity may decay very

56

-46-

Table VIII

-47-

Decay Rates of Rongelap Samples Expressed as the Slope of the Log-log Relationship of Activity to Time after March 1, 1954

		Fish, inv	ertebrat	e, and b	ird tissues	5
	Skin & Mantle	Muscle	Bone	Liver	Gut or Viscera	G ill
n x s/x	11 1.34 0.16	12 -1.39 0.11	10 -1.40 0.11	12 -1.68 0.16	11 -1.45 0.30	1 -1.28 0

				Misc	ellaneous		
	Kidney of bird <90d >90d		Plankton	Algae	Coconut	Other land plants	Soil
n x s/x	2 -1.25 0.08	2 -1.71 0.12	3 -1.35 0.05	3 -1.20 0.12	3 -0.60 0.56	2 -1.30 0.01	7 -1.31 0.04

-43-

slowly $(r = t^{-.24})$. At the other extreme are occasional samples of fish gut, the radioactivity of which decays fast $(r = t^{-2.4})$.

.59

Table I.Radioactivity of Fish fromRongelap Atoll, 1954-55

Values expressed in thousands of d/m/g of wet tissue

Island	Common Name 1/	Skin	Muscle	Bone	Liver	Viscera	Entire
3/26/54 Kabelle	damsel 4 parrot 1 squirrel 2 grouper 5 " 4 " 1 shark "	41.5 52.5 102. 106. 74.0 35.6 12.4 20.9 16.5 28.7 23.1 36.5	4.85 10.3 11.4 13.3 8.44 6.25 3.45 4.22 1.75 2.95 2.90 2.52	14.8 26.8 79.9 96.0 21.5 12.5 9.53 7.50 5.19 17.3 7.73 19.5	889. 1,820. 381. 780. 680. 399. 98.2 141. 15.3 71.2 27.7 70.3	3,590. 3,890. 332. 4.020. 645. 331. 180. 417. 69.8 21.1 5.68 15.1	
7/16/54 Kabelle	mullet surgeon 1 butterfly 2 """ 1 damsel 3	13.6 3.09 4.04 4.78 2.55 4.27	3.15 .903 .974 1.12 .335 .796	9.59 5.35 8.82 4.31 3.80 5.31	59.3 23.7 60.2 23.2 28.1 70.1	328. 89.1 16.3 13.8 12.2 23.9	10.9
	" 5 " 2 parrot 2 " " " " herring	6.03	.564	5.07	97.8	84.4	7.42 7.64 21.1 22.4 18.4 15.0 17.6
	halfbeak " goatfish 2 " " "	4.81 4.80 5.41 3.62 9.78 11.7 6.96 6.05	.540 .353 1.09 .970 1.46 2.00 1.08 .933	2.86 2.95 4.27 2.80 30.1 12.4 15.2 6.83	24.7 36.6 45.6 21.2 152. 91.2 58.3 83.8	13.8 14.5 18.9 11.7 59.4 101. 39.2 29.2	10.7
	wrasse 2 """" grouper 2 """	` 1.41 3.55	.24 6 .767	.473 3.86	14.8 39.1	6.39 29.6	10.0 9.75 4.67 6.24 4.67
							6. 48

1/ see page 33 for scientific name

.

-50-

1.0

(Table I cont.)

Date and Island	Common Name	Skin	Muscle	Bone	Liver	Viscera
7/16/54 Kabelle (cont'd)	squirrel 1 """"	.596 1.32 1.37	•399 •454 •467	.850 5.95 4.25	10.5 54.2 61.1	48.2 17.7 12.1
12/27/54 Lagoon	tuna "	5.73 3.86	.079 .139	.770 .251	5.76 3.09	1.28 .972
12/8/54 Lagoon	snapper	.960	.218	.724	4.70	1.14
1/25/55 Rongelap	<pre>surgeon 2 blenny 2 """" damsel 1 """" goatfish 2 """"" squirrel 1 """"" grouper 3 """1 jack</pre>	.209 .196 .097 .084 .062 .561 .347 .418 .668 .399 .298 .509 .514 .447 .685 .473 .721 .752 .216	.061 .068 .026 .031 .040 .061 .052 .065 .063 .085 .103 .091 .106 .082 .084 .138 .144 .093 .052	1.81 .214 .073 .195 .140 .304 .449 .295 .487 .907 .352 .981 .734 1.44 1.32 .378 .682 1.11 .879 .395	3.15 1.04 .545 1.13 .998 2.80 2.92 3.15 5.54 3.89 1.59 2.99 7.07 4.01 9.63 1.0 9.63 1.0 9.63 1.0 3.30 3.48	1.02 1.04 2.77 3.36 9.34 5.91 5.37 7.08 1.96 1.01 2.50 3.91 1.59 2.87 3.64 2.21 5.09 .986 .766
1/26-29/55 Lagoon	grouper " 4 snapper 1 " " 2	1.25 1.52 2.20 1.62	.072 .089 .191 .375 .386 .165 .074	.671 .694 .682 .490	3.84 1.91 10.6 3.93 5.07 2.75 3.63	1.86 4.53 1.30 7.32
1/28/55 Labared j	damsel 2 """ surgeon 1 ""2 parrot 1 """	2.08 .721 2.05 2.10 1.90 .932 .977 1.68 .725	.728 .374 .436 .133 .251 .145 .149 .115 .201 .147 .184	3.08 2.62 1.16 1.65 2.10 1.21 .815 1.06 1.59 .818	21.6 7.00 1.73 18.0 1.41 7.26 7.88 25.8 3.79	8.85 10.9 12.8 27.1 9.45 3.20 45.7 29.1 38.5

61

 $\mathbf{T} = \mathbb{R}^{n}$

t

-52-

(Table I con	t.)					
Date and Island	Common Name	Skin	Muscle	Bone	Liver	Viscera
1/28/55 Labaredj (cont'd)	mullet " " blenny 2 " " " " " " "	1.05 .564 1.35 .789 .611 1.65 .614 .782 .577	2.49 .265 .513 .496 .236 .264 .306 .408 .278 .269	1.91 .537 1.97 1.09 .758 1.29 1.41 1.50 1.84	8.22 4.35 5.50 28.3 4.81 10.1 8.74 14.8 14.4	286. 6.86 47.0 54.3 19.5 37.5 24.3 25.1 43.8
	wrasse 2 grouper goatfish lizard "	1.63 1.47 1.08 .828 2.34 2.13 1.61 1.92	.348 .401 .175 .447 .353 .300 :386 .252	1.43 1.76 1.50 1.05 3.88 1.83 1.13 2.08	3.97 4.05 2.75 15.1 17.5 6.51 14.5 3.81	18.2 14.8 4.68 3.25 26.4 1.52 4.51 1.93
1/29/55 Kabelle	<pre>mullet " surgeon 2 damsel 1 f5 blenny 1 f2 goatfish 2 ff fish 2 ff fish</pre>	1:19 .382 .587 .641 .649 1.46 1.11 .509 .525 1.36 1.78 1.05 .687 .433 .826 .622	.181 .166 .184 .125 .139 .246 .168 .167 .253 .299 .436 .264 .125 .110 .117 .108	.952 .612 .926 .944 .906 1.70 .683 1.02 1.92 2.23 2.97 1.36 .191 .504 .726 .606	5.74 3.45 4.05 3.63 10.2 9.02 3.35 6.54 8.00 1.34 18.1 2.67 12.2 13.0	9.35 16.9 11.2 2.30 3.76 15.8 4.06 11.6 11.2 14.4 10.3 9.85 .490 2.77 6.24 .249
1/30/55 Gejen	demsel 1 wrasse 1 grouper 4 """ 6 goatfish 1 flatfish	3.44 1.37 1.34 1.39 .591 .861 1.20 2.54 3.18	.350 .215 .279 .273 .118 .268 .396 .405 .248	2.40 1.42 1.79 1.15 .368 1.13 1.42 4.95 1.96	27.4 15.3 21.9 38.1 2.32 4.38 4.77 18.0 3.70	37.6 8.62 5.02 6.65 1.21 2.36 1.78 17.5 5.30

đ

UNIX . TSN -

65

,

	ific Names of Fishes
∵lenny 1 2	Istiblennius <u>edentulus</u> Daulus
butterfly 1 "2	Chaetodon <u>collaris</u> <u>lunula</u>
damsel 1 " 2 " 3 " 4 " 5	Abudefduf sordidus Dascyllus aruanus Chromis caeruleus Pomacentrus nigricans vaiuli
flatfish	Bothus mancus
goatfish 1 2	Mulloidichthys auriflamma samoensis
grouper 1 "2" "3" "4" 5" 6	Epinophalus elongatus fario " <u>hexagonatus</u> " <u>merra</u> " <u>spilotoceps</u> Variols louti
to these k	Hyportambus laticeps
Gerrlag	Spratelloides delicatulus
jack	Caranx melampygus
lizard	Synodus variegatus
mullet	Neomyxus chaptalii
parrot 1	Scarus purpureus sp.
shark	Carcharhinus melanopterus
snapper 1 2	Letaria sp. Lutida ap.
squirrel l "2 "3	Holocentrus sammara Myripristis multiradiatus sp.
surgeon 1 2	Acanthurus <u>elongatus</u> triostegus
tuna	Gymnosarda nuda
wrasse 1 "2	<u>Gomphosus varius</u> Halichoeres trimaculatus

Name of Street, or other

Change and the second

٠

ŧ

tr. €tre

		Misc.	- -	720 22 1, 890 22/ 1, 500 22/		20 2/			3.4 R
		Kidney		190 780 740		120			
	Ð	Liver			5,400 9,400 790	65 88 106	32		280 320
-954-55	wet tissu	Gonad	877 877 1,440 1,140 1,140 1,300 1,300	3,000		8°4		7.8 4.6 10.5	
Atoll, 1	i/m/g of	Mantle		122 116 98	0111	6.5			88 88 88
ongelap	b lo sbu	6111		350 840 011	3,000 1,400 1,300	52 55 66	828		
ted at R	n thousa	Integ- ument	227 531 531 291 291 291 250	202	1,600 1,500	24 122 190	5.12	1.9 6.3 6.3	
s Collect	essed in	Gut	3,170 8,500 5,900 940	760 16. 16.	3,600 2,500 700 700 700 700 700	90 240 240	58 119 1480	25 25 25	66; 64 58; 62 150; 92
able II. Coral	Values exp	Muscle	251 266 292 292 292 292 292 292	1,400 530 47	140 182 260 21	11. 2.9 6.8	. % • • • • • • • • • • • • • • • • • •	3.4 2.1	11 9.8 47
F		Organism	sea cucumber	giant clam	srider snall crab hermit crab coconut crab	sea cucumber giant clam hermit crab	coconut crab	sea cucumber	spider snail
		Date and Island	3/26/54 Kabelle		Labared	7/16/54 Kabelle		12/8/54 Kabelle	

-- 54-

Other Than

ь

. 45'

Table II don	(.)									
Date and Island 1/26-30/55	Organiam ¥	Muscle	Gut	Integ- ument	6111	Mantle	Gonad	Liver	Kidney	kise.
Rongelap	sna11									10 /E /E
	ghost crab redeye crab	-081 •47	2.0	1.6	1.6					19; 25; .68
	rock crab	52.	1.7	146	1.6			⁶ .1		.45 4/
	hermit crab coconut crab	22 66 53	.55 1.4	• 30 5.8	.93			-95		-
Labared	giant clam	67°	5.4		1.8	1.6			Ę	2/
Kabelle	sea cucumber coconut crab	4.8	7.4	9-2 2-2	3.8		7.6	3	i v	×.4
	orange sponge sea urchin	0.1	15.	12.	4.9			5.0		65.51 61
Gejen	giant clam octopus coconut crab spiny lobster		19. 2.0 2.0	.90	6.1 3.2 2.4	6.1 2.2	2	36° 	38	.95 9 12:2/ 3.9 2/
Eniaetok	yellow sponge)	•		•	t •		5/
<pre>1/ sea cuc spider Birgue; urchin, 2/ shell</pre>	umber, Holothuri anail, <u>Pterocers</u> snail, <u>Nerita;</u> <u>Echinothrix;</u> oc	La atra; gi i; crab, <u>Gr</u> ghost crab topus, <u>Fol</u>	ant cla apsus <u>E</u> o Ocypo Ypus; s	m -1, <u>H</u> <u>rapsug</u> de <u>cera</u> piny lot	ippopus hermit tophtha	; giant (crab, Co lma; redo	clam -2, <u>enobita</u> era t	Tridae cocon	na croce it crab, iia; sea	1.7 ¢

-55-

2/ soft parts 4/ egg 5/ entire 6/ spines

•

____Table III. Radioactivity of Coral from Rongelap Atoll, 1954-55

Values expressed in thousands of d/m/g of wet tissue

Date and Island 3/26/54	Acro- pora	Fungia	Helio- pora	Lept- astrea	Milli- pora	Pocillo- pora	Porites
Kabelle	960.	140.				240	20
7/16/54 Kabelle	8.4 14.	3.0 3.6	33. 49.		9.7 7.8	240.	39.
1/29/55 Kabelle	.70 .50 3.5 4.1 .44				,		.22 3.2
1/28/55 Labaredj	3.1			• •88	1.3	1.9	, 2.6

66

-56-

Table IV. Redionativity of Cassmits From

Rongelap Atoll, 1954-55

primary leaf old leaf, external , internal secondary root flower entire flower pedicel entire fruit .434 primary leaf primary pedicel Values expressed in thousands of d/m/g of wet tissue Misc. 2 281 201 688 466 .163 215. 142. 34.4 393. Shell .095 3.13 306 Husk 2024 .063 14.753. 1.76 2.43 Skin 87.8 3.77 11.36 249 Meat 070 174 166 .064 2.55 .082 .151 .099 .056 .031 .031 .120 263 .101 Milk 030 066 31.421 .032 035 035 035 035 035 035 035 035 035 02420028 .125 .230 .154 1/26/55 Rongelap 7/16/54 Kabelle Rongelap Kabelle 12/8/54 Kabelle 1/29/55 Kabelle Labaredj Date and Island 12/13/54 3/26/54 Lukuen 1/30/55 Ge jen

۱

Radioactivity of Edible Plants other than Table V.

Coconuts from Rongelap Atoll, 1954-55

Values expressed in thousands of d/m/g of vet tissue

Late and Island	Name	Edib	le Por	tion	Seeds	Skin	Гевива	o n
3/26/54								· Dute
Labaredj	Morinda		CI CI	4.8			1.070	
12/18/54 Rongelap	squa sh papaya			40.034	.168 .174	.070 .088		.066 pulp
	arrowroot Morinda Pandanus	.052;	.042;	052	.123 .093 .048	2010. 2040. 170. 170.	.182	
./29/55 Kabclle Labaredj	arrowroot Pandanus arrowroot			.124		.133		
Lomuilaí	Pandanus			.362				
Gejen Rongelap	arrowroot papaya			620	141.	112.	·	
	arrowroot "	. :711.	.061;	.135	.129			
	<u>Pandanus</u> squash	• •		074 074 012	020			
	spinech "						.033	

-58-

.033

TMDE: UNIVA

STUDENDOD DE			1		No+05	
				,		
		1 2 2 2	100	1062 42 53		
and the second					11 11	۔ ک
	and the second sec	and the second second distances in the second s				
			And a second sec			

TAULA

Eaten from Rongelap Atoll, 1954-55

Values expressed in thousands of d/m/g of wet tissue

Roots		-	336				•8; 13.2	- -	14.1 2,
Bark	1,630 302 440		72.3	0.J0 17.8	•830 2°53 •266	4•59 1.60	14		3; shrub mfetta
ems Debarked	6.14		968 25	365	•405 •760 •164	-494 -417	2.07 .148		frutescen 5. Trui
tre St	1,630	1,240 782 154	32.4 7.71 3-15	2.783/	•634 1.85 •172	1.25 .944 .990		2.60	SCREVOLA SCGA; her
R. 탄		1 6ZT		126° ; 2°35; 7°25;					hrub 1, 3 aca olera
red	2,070 1,080	12,200	066°€	19.4 3.66 2.95 3.61 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.	•	Ę		•499 •0.3	Closa, s. Portul
es M	Uyc c	153		25°3 } 3°53 5 5.92				ч	arda spe i herb 2
Leav Old			1.71 1.25 1.48		3°30 496		1.33 .318 .525 1.48	4•20	Guette
Apical-Bud			1.08; 2.04 1.55; 1.56		676 .	1.71	4•73 •338 •336	1°74	teaj tree 2 erhaavia tei s repens.
Frutt Flower	62 . 7 800 .	469.21			ە 164, 325 ^{2/}	2.682/	•151		hmd dta argen t herb 1, Bo a 1, Lepturu
Name J tree 1	i tree 2 shrub 1 herb 1	herb 1 herb 2 grass 1	tree 1 tree 2 shrub 1 shrub 2	herb 1 herb 2 grass 1	tree 1 tree 2 shrub 1 。] herb 1	herb 2 herb 3 grass 1	tree 1 tree 2 shrub 1 lerb 1	tass 1	Messersc maritima ens; grass
Date and Island 3/26/54	Labared	3/26/54 Kabelle	7/16/54 Kabelle		12/8/54 Kabolle	•	1/29/55 Kabelle		1/ tree 1, Surtana procumb

2/ flower 3/ sample washed before counting

ł

UNE UNES -

of Marine Aloge C 1777

-60-

.

.

1 1

		 	Values	activity o expressed	r Birds in thous	Collect ands of	d/m/g O	f wet t	A COLL, 19	22-440	
	Date	Island	Namel	Skin	Muscle	Bone	Thyro1	d Lune	Litron		ł
	3/26/54	Labared Kehelle	J noddy tern	482.	9.16	121.	5	03 H CC		Kaney	Ileun
	= =		fairy tern	51.0 555.	17.0 6.71	68.7			59.0	67.0	65.0 643.
	t	: =	curlew "	380. 4,970.	9.40	354.	298.0 298.0	17.0 7.0 0	27.0 42.0	31.0 31.0	793.0
	7/16/54	Kabelle	noddy tern	1.58	603			0.10	0.0	291.	66'.0
	: = :	: :	" " fairy tern	1.29			20.00 20.00	11.0	6.58 6.77	3.06 80.06	1.00
	: =	= =			-573 -573	1.57	14.0 270	8.34 20.34	12.2	6.10	1.18
	= :	2	" " "	6.78 л		500	80.02 80.02	150.00	13.50 13.50	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u>с</u> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	=	2	curlew	1.57	101	8.73 8.72	24.0	11.2 175	000	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10,01 10,02
	12/8/54	Kabelle	noddy tern	.789	.060	מונ	•			5.29	21.8
	z	:	fairy tenn	1.88	.074	140				168.	741.
	2	÷		.384	.102	.330 .990	•			-25. 192,	132
	1/26/55 1	Ronglan						.435	.349	468.	.112
		nougeran	" """"""""""""""""""""""""""""""""""""	1.21	165.	1.09		2.07	0 1 0		
		= :	=	12.1	912	3.16		4.11	2.54	5 C 2 C 2 C	266. 266.
	: :	= =		.556		1.56/ 1		۰.58 ۳.58	1.51 .51	1.69	1.21
	. - -	Ŧ	turnstone	2.19	.623	1.04		2.27	رەز. 179	ے رکھر رکھر	.652
	= 0,	£	plover			.248		.387		190 190 1	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ĺ	1/28/22 I	Labared f	noddy tern	628.	.040. 040.	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		.157	137	.490	1.07
: Ł.		£	fairy tern	.776	·358	740		1.74	213. 120	- 295	.085
		=		6.92	140.	190.		.258	243	1.182	
	D 39/05/T	le jen	noddy tern fainw tern		0.050	C710.		.394	217	.258	690
			11.739 / 17.75	140.	.108	.078		.317	223	.240	.167
	1/ Noddy	tern, A	nous stolidus.	faint tor		:					
	Stern	a bergil	; turnstone, A	renaria in	terpres	alba;	curlew,	Numentu	2 3D . ; C	rested t	ern.
						10111 1011	ta; prov	/er, Plu	rialis d	ominica.	

-61-

ŧ

•

--- Table IX. Radioactivity of Tern Eggs

from Rongelav Atoll, 1954-55

Values expressed in thousands of d/m/g of wet sample

Date and Island	Eggshell	Yolk	White	Embryo
7/16/54 Kabelle	1.14 2.15 1.42 1.48 .956	.804 2.03 2.08 ພ.92 .409	.056	.508 .795 .905
12/8/54 Kabelle	.575 .581 .789	.421 .147	.018 .023	
1/29/55 Kabelle	.376 .272 .280	.065 .030 .045 .035		

T Les

76

-62-
-63-									
Table X Radioactivity of Plankton, Soil-Sand, and Water Samples from Rongelap, 1954-55									
Plankton -	Values exp	pressed i	n thousa	ands of	d/m/g o	of wet s	ample		
	3/26/54	7/16/54	12/8,	/54 12	2/18/54	1/26-3	0/55		
Off Lukuen "Kabelle "Labaredj "Rongelap	4. 306.	7 3 ; 5.84	13.7; 2	22.8	.0; 8.5 ¹	3.39; 4.01; 4.2.04; 1.18;	9.61 12.8 0.90 2.10		
<u>Soil-Sand</u> - Values expressed in thousands of d/m/g Island Soil Beach Sand									
3/2	6/54 7/1	6/54 12/	 18/54 1,	/25-30/	55 12/8	3/54 1,	/2 5 -30/55		
Lomuilal		•		166			35.9		
Gejen Kabelle 2,	000 3	12 3	31 5	106	2	0.51/	13.7		
" Labaredi 17.	.000	21		596		9.04	5.04		
" 13, Rongelan	000			2.34			1.16		
nongerap	Lago	on botto	n. 1 / 29-	30/55			* · · · ·		
		<u>, 3/."</u> 3/		1-18	36-24	21/4-3"			
Lomuilal, 55'	0-1 "	47.2 1 2" 2	7.8 1 -3" 3	6.3 -4"	17 .9 4 - 5"	14.5 5-6"	6-7"		
Kabelle, 60.	19.2 1	.6.9 1	6.9 1	6.2	20.0	7.47	3.29		
Labaredj, 150	20.3 I 16.2	.0.9 2	1.4 2	1.0	10.0				
Water - Values expressed in $d/m/ml \pm 0.95$ counting error									
	Lago	on Water			Fresh W	later			
	7/16/54	1 /2 6-	30/ 55	12/18	8/54 1/	26-30/ 5	5		
Lomuilal Kabelle	3.3 ± 3.1 2.3 ± 3.0	5.6 3.3	* 3.0 * 2.7			48. ± 3	.2 ² /		
11 11 -	4.1 + 3.2						21		
Labaredj	-	6.8	± 3.0			25. # 2	$2.2\frac{2}{4}$		
Rongelap		5.6	± 3.0	3.4	<u>202</u> .	4.2 ± 1			
37 37				1.9	.153/				
**				1.8	<u>ک</u> دد. ±				
<pre>1/ at high tide line 2/ cistern water 3/ filtered well water 4/ standing water 5/ ground</pre>									
					U. UNU		1947 - 1958 1969 - 1969 - 1967 - 1968 1969 - 1969 - 1969 - 1969 - 1969 - 1969 - 1969 - 1969 - 1969 - 1969 - 1969 - 1969 - 1 1969 - 1969 - 1969 - 1969 - 1969 - 1969 - 1969 - 1969 - 1969 - 1969 - 1969 - 1969 - 1969 - 1969 - 1969 - 1969 -		
					•				

Data for Computing Per Cent Activity of Fission Table XI.

Products and Calcium in Rongelap Soil Samples Based on 1 Milliliter Replicates

					7001			7502	
	Sample	Number	7500		TOCI			 	-
	в = c/m с	$b = \mathcal{K}$ themical	$\frac{a}{bc} x 10^4 = 4$	¢	ą	$\frac{a}{bc} \mathbf{x} 10^{4}$	ಥ	р	bc x10 ⁴
cerium	21,005	улета + 40 48	. 44	10,014 9,909	58 58	35.	16,719 17,946	833 833	30
trivalent	26,297	75 <u>1</u> /	28.	3, 562 8, 992	75 2/	24.	13,507 12,353	75 JY 75	25.
rare carua zirconium	19,099 18,809	60 - 60	19.0	9,337 9,532	72	27.	13,439	75 72	26.
niobium	7,584	96 96	6.9	3,618 3,386	93 95	7.8	4,857 4,488	100 79	7.7
ruthenlum	10,289 9,518	972/	8.2	3,019 3,321	87 2/ 97	7.2	5,247 3,664	100 2/ 97	6.6
strontium	1.574	5 1	5.2	253 612	50 30 30	3.4	551	29	ວ. ເ
barlum	6,192	1 8 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	6.2	2,158 1,372	85 85	† • †	3,019 3,494	64 74	6.9
calcium	527	3/	0.4	278 190	3/	0.5	356 487	3/	9.
total	538		118.	+ - -		109.			111.
c = c/m, non separated aliquot	123,558 123,558 124,561			47.992 48.282 47.370			68,758 69,692 67,304 68,585		
average	124,008			47,882	1		2001 and +		
1/ from prev	lous expe	riments;	yields for	these ar	alyse:	greater	2007 IIS[]]		

-64-

 $\frac{2}{3}$ spike yields; chemical yields greater than 100% $\frac{3}{no}$ yield was determined

7

USP USPA Table XII. Physical Decay Rates of Rongelap Samples

 $r = t^{-x}; t_0 = March 1. 1954$

Plate No.	Date and Island	Substa Orga	ince or	Tissue	No. of Times Counted	X, Decay Rate	
4032 4033 4034 4035 4036a 4036a	3/26/54 Kabelle	damsel " " squirre	fish " " " " "	skin muscle bone liver gut skin	2 2 2 2 2 3 3	1.49 1.42 1.33 1.64 1.11 1.62	
4045 4046 4047 4048 4049		88 88 89 89 89 89 89 89 89	88 88 99 99 99 91	muscle bone liver gut gill skin	4 2 3 2 2 2	1.59 1.53 1.86 1.61 1.28 1.30	
4050 4051 4052 4053 4054 4055		" " parrot	" " fish	muscle bone liver gut gill skin	4 2 3 2 2 2	1.63 1.45 1.71 1.58 1.47 1.30	₽ ¹
4056 4057 4058 4059		19 87 10	11 17 11	muscle bone liver & gut	4 2 2	1.77 1.95 2.96	
5000 500 6 5008a		giant "	clam "	mantle muscle visceral mass	33 28 18	1.28 1.27 1.14	
50 16 50 17 5023 50 578		spider " sea cu shore	snail " cumber crab	mantle muscle " gastric	13 13 14	1.15 1.24 1.38 $(\frac{1}{2}-1)$	fe ~80-d)
5078	-	coconu	it crab	mill gastric mill	15	1.13	
6009		Messer	rschmidia	debarked stem	34	1.31	
6018 7002 7003 7021 7030	Labared Kabelle	j <u>Boerhs</u> sooty fairy sooty	tern tern tern tern	leaves bone liver " kidnev	55 17 13 13 13 31	1.29 1.60 1.28 1.31 1.36 1.17,	< 90 days
7032 7040		curle	w	n 1 (1	15	1.59, 1.83,	>90 days >90 days

-65-

UNU . UNU . B •

.:

1

(Table XII c	cont.)	-66-			
Plate No.	Date and Island	Substance or Organism	Tissue	No. of Times Counted	X, Decay Rate
7500a 7501 (glass)	3/26/54 Labared j	soil "	top inch	40 3 8	1.35 1.34
7501 (glass) 7501a 7502a 8203 8240 6844 6859 12151 12152 12153 12154 12155 12186 12201 12202 12203 12204 12205 12231 12232 12233 12234 12235 12236 12237 12238 12236 12237 12238 12239 12240 12241 12242 12241 12242 12241 12242 12241 12242 12251 12251 12252 12253 12254	Labared j Kabelle Labared j Kabelle 7/16/54 Kabelle	" " " " " " " " " " " " " " " " " " "	entire """" skin muscle bone liver viscera entire skin muscle bone liver viscera skin muscle bone liver	387488867777777585455576555756557566666	$\begin{array}{c} 1.3\\ 1.28\\ $
12255 71 9947 9949 10700	12/8/54 Kabelle	tern soil " coconut	viscera eggshell mid-islan intertida meat	40 d 10 1 11 12	1.76 1.36 1.23 0.96
10706 10745 10748 19006		Halimeda Caulerpa plankton	milk entire entire	11 11 11 10	0.24 1.22 1.33 1.36

-

3

٦ د ا